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D3.1 – SPACE ML, Visualization and workflow framework use cases and requirements

Executive Summary

This deliverable D3.1 ”SPACE ML, visualization data analysis and workflow framework use cases and require-
ments” is a report on requirements and use cases for the SPACE Machine Learning and visualization tools, and
topology-aware workflows for modular High Performance Computing (HPC) applications.

The use cases and requirements have been collected in WP3 Task T3.2: ”Identification of user cases for
visualization and suitable tasks to exploit ML” and in close collaboration with the A&C community in WP1,
in order to better identify post-processing analysis for the simulation data products and to integrate run-time
modules suitable for coupling the WP1 exascale applications with visualization tools (such as VisIVO, Blender
and Paraview) and Machine Learning techniques including representation learning, generative AI and Convo-
lutional Neural Networks.

This deliverable will guide the future development of such tools in WP3 for the duration of the project, as
it provides the base layer of technical, non-technical and functional constraints, requirements, and needs of the
code developers and users.
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D3.1 – SPACE ML, Visualization and workflow framework use cases and requirements

1 Introduction

One objective of the Scalable Parallel Astrophysical Codes for Exascale (SPACE) Centre of Excellence (CoE)
is to integrate data analysis techniques with exascale applications in Astronomy and Cosmology to enhance
scientific discoveries from the results of numerical simulations. SPACE WP3 ”Extreme data processing and
analysis” addresses this topic by developing prototype frameworks based on ML, visualization tools and work-
flow engines for the exascale applications that will be developed in WP1. These frameworks will be tailored to
the Astrophysics and Cosmology community, represented by the developers and end-users of the flagship sim-
ulation codes of the SPACE CoE, i.e.: OpenGADGET, PLUTO, Bhac, Changa/Gasoline, Fil, iPic3D, Ramses
and WhiskyTHC.

Within the WP3 Task T3.2: ”Identification of user cases for visualization and suitable tasks to exploit
ML”, visualization, Artificial Intelligence (AI) and astrophysics experts have reviewed existing data process-
ing and analysis solutions, and identified components of specific interest and feasibility for their modelling in
data analysis frameworks for the Astrophysics and Cosmology (A&C) simulation codes, whether as run-time
or post-processing stages, and prioritising those components with reduced dependencies and interactions with
other modules. This task was developed in close collaboration with WP1, in order to gather the requirements
related to better exploitation of post-processing simulation data products and of run-time modules suitable for
coupling the applications with visualization and ML. Furthermore, interactive meetings and hands-on sessions
engaged the A&C scientific community to collect the most representative use-case scenarios.

The use cases presented in this document will be developed during the span of the project into functional
prototypes within WP3 Tasks T3.1: ”Topology-aware workflows for modular HPC applications”, T3.3: ”High
performance visualization for astrophysics” and T3.4: ”Machine learning for astrophysics”. The key performance
indicator KPI.3.1.”Use cases for visualization and of tasks suited to ML exploitation” related to the present de-
liverable states the need to clearly identify the use cases in order to exploit advanced visualization tools and ML
techniques in post-processing. While it specifies a minimum of 2 use cases identified and reported in the present
document, we have exceeded this number by identifying a total of 7 use cases: 3 in visualization, 3 in ML and
1 in workflows. In this document, we present the identified use cases and the user requirements contributed by
the scientific partners, as well as the methodology used to both gather the requirements and select the use cases.

This document is organized as follows:

• Section 2 - Methodology, discusses the processes followed to gather the relevant information from all the
partners involved and to structure this information into the user cases and requirements.

• Section 3 - Use Cases and requirements. This section presents the motivation, the main stakeholders and
the structure of the use cases presented in the following sections of the document. The use cases sections
reflect the classification of the WP3 tasks and activities according to the three main involved technologies,
i.e.: High-performance visualization, Machine Learning assisted analysis and workflows.

• Section 4 presents the three identified use cases for high-performance visualization, i.e.: i) In-situ par-
allel visualization through Hecuba; ii) Interactive, volume-based cinematic visualization; iii) Interactive
distributed visualization for HPC and cloud environments.

• Section 5 presents the three identified use cases for Machine Learning, i.e.: i) Representation learning
for explorative knowledge discovery in simulations; ii) Physics-informed reconstruction using synthetic
observations of cosmological simulations; iii) Predicting the effect of radiation on gas cooling rates on-the-
fly in hydrodynamical simulations.

• Section 6 presents the identified use case for workflows: Topology-aware workflows for modular Exascale
data analysis.

• Section 7 - Conclusions
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2 Methodology

2.1 Resources

As a starting point to identify the use cases and requirements for visualization, machine learning, and workflows,
two main resources were used:

• Data characteristics table. Spreadsheet of the technical characteristics of the simulations’ input/output
data.

• Requirements Questionnaire. Questionnaire specifically tailored for the code users and developers inside
the SPACE CoE.

2.1.1 Data characteristics table

A comprehensive spreadsheet of the technical details of each code’s input/output data. This spreadsheet was
devised in WP1 and WP2, and contains information about file size, data format, data structure, simulation
details, input parameters, etc. This resource serves as a valuable complement to section 3 of the Requirements
Questionnaire, as it provides more thorough information of the data that WP3 will work with along the project.
The table is available in Appendix A.

2.1.2 Requirements Questionnaire

Based on previous experiences, WP3 partners collectively created a questionnaire aimed at the A&C code de-
velopers and users. This questionnaire focuses on understanding current and desired uses of visualization and
ML, opportunities and challenges of the exascale, and the characteristics of the output data from the simula-
tions. Participants from WP1 filled in the questionnaire once per scientific use case. We gathered a total of 10
responses with at least one answer per code, specifically, 3 for OpenGADGET and one for each of the other 7
codes. The questionnaire is available in Appendix B.

The questionnaire is divided in the following sections:

• Instructions and contact details.

• 1. Scientific case. Name, description, and reference to the scientific use case that was used to fill in the
questionnaire.

• 2A. Visualization: This section focuses on understanding how the participant currently uses visualization
tools and techniques, and especially, what would they like to achieve in those terms that they can’t
currently. The questions are:

– What do you mainly use visualization for?

– Do you already use any visualization tool? Which one?

– Are the tools you have tried not sufficient for your needs? why?

– Are you planning on adopting an existing tool that may suit your needs? Which one and why?

– Mark below the types of data visualizations that you produce more often or find more useful.

– As a reference for us, add links to images, papers, documents, etc. of plots that you make and plots
you would like to make

– Mark the most relevant challenges to visualize your data

– What would you like to use visualizations for, that you cannot now?

• 2B.Machine learning assisted analysis. Similarly to the previous section on visualization, this part focuses
on understanding both current and desired uses and applications for Machine Learning.The questions are:

– Do you currently perform any ML-assisted analysis? Which?

– Desired (Already identified potential uses of Machine Learning) Which?

– Mark potential applications of ML of interest to your case
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D3.1 – SPACE ML, Visualization and workflow framework use cases and requirements

– Why is the ML-assisted analysis in this case necessary/beneficial to address the scientific/research
question?

– Example of envisioned code use

• 2C. Exascale. This section inquires about foreseen challenges that might arise in the porting of the codes
to exascale supercomputing. The questions are:

– Example of envisioned code use

– Mark potential challenges of porting to exascale, if any

• 3.Output data. Regards to aspects of the simulation results that are relevant in Ml and Vi applications,
e.g., file format, average size, data structure, output cadence, etc. The questions are:
File characteristics

– Current format? Is it convertible to hdf5?

– Has Metadata/Description?

– Approximate size

– Data type (single, double, quad precision)?

– Structure (perticles, FVM, FEM, AMR)

– Are there post-process outputs beyond the raw output?

Time

– What is the simulated time span?

– What is the typical post-process/snapshot frequency?

– What is the estimated optimal temporal resolution to visualize results and how does this relate to
time steps?

Spatial Resolution

– What is the Spatial scale and the Spatial Resolution? Is the discretization of the space uniform or
multi-resolution?

Variables/Fields

– Which are the most relevant or typically used for analysis/visualization?

– Do you compare several runs with different parameters? or distributions/ evolution within a single
run?

– Is there sample data of this case already available for use in visualization or Analysis?

2.2 Analysis of the results

The output of the first resource, the data characteristics table, provided a thorough understanding of aspects
relevant in this present stage of gathering requirements and identifying the use cases. The most important of
them are: file format, a measure of file size (average, maximum, etc.), data availability for testing, and presence
of metadata. This information allowed us to identify cases which, for example, require more intensive computing
resources for visualization, pose difficulties in moving and copying files due to big data sizes, or cases that share
similar data structures and can potentially share visualization, ML, or workflows solutions.

Regarding the requirements questionnaire, we identified several opportunities for applying visualization and
ML tools and techniques, and workflows. To illustrate the relations between these opportunities and the existing
lines of work of WP3 partners, we created the spreadsheet ”Proposed use cases”. It contains a line for each
response submitted by the partners to the questionnaire, and columns for the code name, main interests in
visualization or ML, and possible matches among the solutions offered by the WP3 partners as described in the
SPACE proposal. The spreadsheet is available in Appendix C.

The main criteria to translate the requirements into Use Cases were:
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2.2 Analysis of the results

• There is a match between: a) the needs for a visualization or ML solution in the analysis pipeline for a
given code, and b) the lines of work proposed in the description of Work Package 3 of the SPACE CoE
proposal (e.g., a code whose output files are expected to use considerable disk space resources matches the
proposal of an in-situ visualization pipeline, so the results can be visualized without extra disk usage).

• That the given use case can either be extrapolated to other similar codes in future work with minimum
adaptation work, or is based on a code-independent post-processing stage and can be used with more than
one of the codes in SPACE.

An important, complementary and transversal part of defining the use cases and requirements for this deliv-
erable were P2P meetings to discuss the interest, requirements, and constraints of all the available possibilities.
These meetings could involve two or more of these groups: the simulation code users and developers of WP1
as final users and code providers; the WP3 partners as responsible for the final development of the ML, visu-
alization and workflows applications; and the Principal Investigator of the project or the Management Board
as agents with a broader understanding of the project and the consortium. As an example, the identification
of the codes that are best suited for modularization and for the insertion of run-time ML solutions in their
exascale-optimized versions, was more efficiently performed through direct meetings with the code developers
and scientists than through the requirements questionnaire because the adaptation of the codes to exascale
architectures is an ongoing process and the core of the SPACE CoE.
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D3.1 – SPACE ML, Visualization and workflow framework use cases and requirements

3 Use Cases and Requirements

3.1 Motivation.

Over the years, the A&C domain has developed a set of ad-hoc tools and software modules to tackle the
challenging particularities of the field. With the emergence of ML, high-performance visualization, and Visual
Analytics (VA) as enabling technologies, some of these components become candidates to be replaced by either
faster, more accurate, or more efficient data-driven technologies. In SPACE WP3, experts in visualization and
AI techniques applied to astrophysics have performed a review of the existing software of interest, and identi-
fied components of specific interest in the SPACE exascale codes to be integrated with visualization and ML
techniques, addressing run-time and post-processing stages, and prioritising those components with reduced
dependencies and interactions with other modules while maximising data usage and availability. In this task,
WP3 partners worked in close collaboration with WP1 scientific partners to gather the use case requirements
and the software specifications related to better exploitation of post-processing analysis products and of run-
time modules suitable for coupling the applications with visualization and ML.

3.2 Stakeholders and Users

The selected ML and visualization use cases will be developed for and in close collaboration with the scien-
tific partners of the SPACE project. However, the general goal is to address the whole A&C community by
developing tools that are accessible and usable by a larger number of users. In this regard, some of the ML
and visualization applications will be offline post-processes that use the results of the simulation codes and/or
observational datasets as inputs, which will make them more easily ported to different simulation codes, and
adopted by other members of the community outside SPACE. Other tools, however, will be devised as run-time
solutions and hence embedded within the selected simulation codes. This will make portability and adaptability
to other codes more difficult but still feasible. We will try to make this type of ML and visualization tools as
modular and independent from the codes as possible, in order to facilitate its future adaptation to other codes.
Based on the resources mentioned in the previous section, we have selected three visualization Use Cases, three
ML use cases, and one workflow use case.

3.3 Structure of the use cases

In order to maintain coherence among the document, all the use cases follow the following structure:

• Title

• Use Case leading partner in WP3

• Statement of the problem

• Proposed solution

• Functional requirements

• Future applicability to other codes
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4 Visualization Use Cases

The three identified use cases for high-performance visualization are described below.

4.1 In-situ Parallel visualization through Hecuba

Lead WP3 partner: BSC

Statement of the problem Traditional workflow prescribes storing the simulation results to disk and later
retrieving them for analysis and visualization. However, at petascale this storage of the full results is prohibitive.
A solution to this problem is to run the analysis and visualization concurrently (in-situ) with the simulation and
bypass the storage of the full results. One mechanism for doing so is in transit visualization in which analysis
and visualization is run on I/O nodes that receive the full simulation results but write information from analysis
or provide run-time visualization.

Proposed solution The BSC will use Hecuba to adapt both the simulator and the visualization tool to
interact with a highly distributed database. Hecuba is a set of tools and interfaces that aims to facilitate the in-
teraction with key-value datastores. Hecuba implements an Object Mapper for Cassandra, a recognized noSQL
distributed database, that allows programmers to use a common interface to access data as regular in-memory
objects, regardless if they are persistent (stored in disk) or they are actual in-memory data.

The starting point will be previous work in which we extended the ParaView software package to use Hecuba
as a data source. While this approach implemented a pipeline to provide off-line and on-line visualizations, it
lacked a mechanism to synchronize on-line visualizations with the arrival of new data, requiring the user to
manually refresh the visualization. Hecuba will be extended to implement a lambda architecture. Lambda
architecture (3) is a data-processing architecture defined to speed up online analysis for Big Data applications,
without losing the ability to persist the output data of the applications. With this approach, Hecuba will allow
at the same time, to persist the generated data in a key-value datastore and to produce a stream of data for on-
line visualization. Thus, Hecuba will be able to support both off-line and on-line data visualizations (see figure
1). With the streaming capability, the visualization tool will detect if new data is available and automatically
refresh the visualization.

Figure 1: Workflow to support online and offline visualization using Hecuba and Paraview

Functional requirements The goal is to enable online visualization of the data output of the simulator.
This online analysis allows to check the partial results in advance and to select which data is worth keeping
in persistent storage to perform additional offline analysis once the simulator ends the execution. With this
approach, on the one hand, scientists do not need to wait until the simulation finishes to start analyzing the
data; on the other hand, it is possible to save storage time and storage capacity with a conscious selection of
the data persisted.
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D3.1 – SPACE ML, Visualization and workflow framework use cases and requirements

The development of this framework will require the implementation of a specific writer in Changa, the se-
lected simulation code for this use case, that outputs the data files directly to Hecuba in a format also readable
by the end visualization software: Paraview.

Regarding the execution platform, Hecuba can run on any general-purpose machine. The ideal way to
extract the greatest possible performance is to use distributed systems with local disks on each node. It is
compatible with Slurm-based queuing systems (although it is feasible to adapt the deployment scripts to other
queuing systems). This lack of specific hardware requirements makes the solution easy to port from one HPC
cluster to another.

Future applicability to other codes The Paraview plugin will use Hecuba to retrieve the data to visualize.
The interface to retrieve the data will be mostly independent of the data source (online data, streamed during
the execution of the application, or offline data, stored in the database), the only difference will be the specifi-
cation of the base classes in the data class definition. This plugin could be used, potentially, with any spatial
data that is readable by Paraview. The main complexity of the developments focuses on the new Hecuba code
(to deal with the online scenario) and the deployment of the software stack (that should allow remote visu-
alization). The modifications to the simulation software will involve adapting the data class definition to use
Hecuba classes, which depends on the type of data generated by the simulator. A priori, this should translate
in a flexible adaptability of the pipeline with reasonable effort to other SPACE A&C codes that, a) permit
the implementation of Hecuba classes in the code, and b) the output data can be read with Paraview, such as
OpenGadget, RAMSES, or PLUTO.

4.2 Interactive, volume-based cinematic visualization

Lead WP3 partner: IT4I

Statement of the problem Astrophysical and cosmological simulation codes demand intensive computa-
tional resources, generating datasets ranging from terabytes to petabytes. Efficient post-processing is integral
to the simulation process for successful analysis. Among various post-processing techniques, volume rendering
stands out as both illustrative and computationally intensive. This technique enables the simultaneous dis-
play of the entire volume of resulting data, offering a clear visualization of complex physical problems. Volume
rendering has a distinct advantage in visualizing trillions of calculated values concurrently and efficiently manip-
ulating this data across the analysis domain. Unlike other techniques, such as isosurfaces or streamlines, volume
rendering does not require calculating additional geometric structures. Users can adjust transfer functions to
modify the volume transparency, define color scales, and visualize intricate physical processes. Achieving high-
fidelity outputs demands features like complex lighting, shading, detailed material effects, and advanced camera
control. Classical visualization and analysis tools like ParaView and VisIt lack or have limitations in these
advanced features, necessitating the exploration of alternative data visualization tools.

SPACEWP3 partner IT4I has developed a scalable approach to convert the results of a large-scale Computational
Fluid Dynamics (CFD) simulation into a volumetric representation and provide high-fidelity volume rendering-
based visualizations. The workflow for CFD data visualization consists of the following:

• Parallel loading of CFD data into distributed memory of a cluster.

• Data redistribution to improve load balance for voxelisation.

• Voxelisation and data conversion into a volumetric database, namely OpenVDB (1).

• Import of OpenVDB (1) data in a visual effects software. Our pipeline is currently based on Blender(4)
using volume rendering as implemented in Blender Cycles path-tracing renderer (5) to produce cinematic-
style visualizations (6), but other similar software packages could be used in this stage.

Using this workflow, it is possible to interactively visualize the data in a reduced path-tracing setup but
still in high enough quality to observe and understand the captured phenomena. In this mode, it is possible
to tweak shader parameters, scene lighting, camera setup, etc. and provide the final visualization setup of the
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4.2 Interactive, volume-based cinematic visualization

scene. Then the path-tracing renderer can be used as an offline tool to provide high-fidelity outputs. An exam-
ple of a large-scale CFD simulation can be seen in Figure 2. It is an idealized supercell thunderstorm simulation.

Figure 2: Volume rendering of data from CM1 (Cloud Model 1) converted to OpenVDB (1). CM1 is a three-
dimensional, time-dependent, non-hydrostatic numerical model for atmospheric research made by George Bryan
at The Pennsylvania State University. Parameters of the simulation: Domain size x = 127 km, y = 127 km,
z = 9 km; Grid of 1700 x 1700 x 121 points; timax = 6000.0s (end time); tapfrq = 30.0s (timesteps); Output
1.6TB of data, 200 files in netCDF4 format; Simulated on 64 nodes, each 128 MPI processes, through 24hours.

The visualization Team of the BSC has also developed previous work consisting in a translator from simu-
lation formats compatible with the VTK (7) format to multi-level OpenVDB (1) files. The aim is to generate
sparse volumes that are more efficiently stored and loaded, and faster on render time.

Proposed solution Based on previous experience on CFD data, this use case will produce a visualization
workflow around three main components: (i) a sparse volumetric format, (ii) Blender software (4) for visu-
alization and user interaction, and (iii) path-tracing rendering via CyclesPhi (5) or another HPC compatible
renderer. See the Figure 3.

Figure 3: Proposed concept of interactive data visualization applied to data from OpenGADGET

The development of this use case will focus on OpenGADGET and its particle-based output data type. To
exploit the volumetric format and consequent volumetric visualization, particles will be converted to voxels by
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performing parallel voxelisation, similar to previous work for CFD data. There will be no further dependencies
with OpenGADGET after the voxelisation stage, and the visualization approach will be general. Volumetric
data will then be transferred to allocated GPUs running the path-tracing renderer, e.g. CyclesPhi. All of this
processing will happen on an HPC cluster. From there, only the image data will be sent to a viewer on the user’s
PC. For the viewer, the Blender software will be leveraged by adapting its environment, given the possibility to
extend its functionality via Python addons. This will result in a user-friendly, data-minimalistic and interactive
solution for data visualization.

IT4I plans to use the open-source C++ library OpenVDB (1) with NanoVDB (8) for the sparse volumetric
format. The OpenVDB (1) format is already an industry standard. It will allow universal use among large
collections of rendering and visualization software other than Blender. The NanoVDB format is optimised for
GPU usage, and therefore, it is an ideal solution for interactive volume rendering of cosmological data.

As a complementary line of work, the visualization Group of the BSC plans to investigate the use of Open-
VDB (1) for the visualization of A&C simulation codes in offline pipelines aimed towards the production of
high-impact visualizations for dissemination purposes. Effective pipelines of data conversion from scientific
formats to OpenVDB (1) can be applied to a variety of movie-industry design softwares (e.g., Blender, SideFX
Houdini, Autodesk Maya and 3DS Max, etc) and render engines (e.g., Cycles, Redshift, Arnold, Karma, etc.)
to produce high-quality cinematic imagery. As opposed to an interactive visualization solution, an offline render
pipeline sacrifices the interactive data exploration capabilities, but provides the highest possible render quality
of offline rendering. Along with the main purpose of this use case, the development of an interactive cinematic
visualization tool for cosmological simulations, we will investigate the application of the OpenVDB (1) format
as an exchange format, to efficient, high-quality production of visualizations of the A&C codes in the SPACE
project.

Functional requirements The main purpose of data visualization is to help users understand, interpret, and
extract insights from the information presented. Under specific conditions, such as multidimensional datasets,
these goals are more effectively achieved through interactive visualizations where users can perform transfor-
mations to the visual representations, such as faceting and zoom/pan, or even change the data source through
filtering, annotation or aggregation. With such aspects in mind, it will be required to provide the following:

• High-fidelity visualization of different cosmological problems

• Interactive exploration of the data through basic camera operations (zoom, pan, roll)

• User-friendly interface for advanced interaction with the data (slice, filter, control color and transparency,
etc.)

Future applicability to other codes As stated above and similarly to the previous use case, 4.3.1, the
proposed workflow poses a flexible and modular implementation that should permit its adaptation to other
similar SPACE A&C codes with a reasonable effort. In this case, it will require to adapt the data reader to the
output of the simulation code.

4.3 Interactive, distributed visualization for HPC and cloud environments

Lead WP3 partner: INAF

Statement of the problem SPACE codes are expected to produce massively large data volumes (in the
order of petabytes) executed on high performance computers. Such data volumes pose significant challenges for
storage, access and data analysis. The visual exploration of big datasets, as one aspect of data analysis, pose
some critical challenges as well, specifically: (i) Interactivity. The ability to deal with datasets exceeding the
local machine’s memory capacity; for complex visualizations the relevant computations should be performed
close to the data to avoid time consuming streaming of large data volumes; (ii) Integration with the scientists’
toolkit for seamless usage, abstracting from technical details related to the underlying HPC resources and free-
ing scientists to concentrate in scientific research; (iii) Facilitate visualization, processing and data analysis in a
collaborative manner within, e.g., science gateway technologies to allow collaborative activity between users and
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provide customization and scalability of data analysis/processing workflows, hiding underlying technicalities.

INAF Astrophysical Observatory of Catania has been developing and maintaining the Visualization Inter-
face for the Virtual Observatory (VisIVO)1 since 2005. VisIVO has recently been extended with the ViaLactea
Visual Analytic modules. VisIVO is developed adopting the Virtual Observatory standards2 and its main ob-
jective is to perform 3D and multi-dimensional data analysis and knowledge discovery of a priori unknown
relationships between multivariate and complex astrophysical datasets.

To produce a visualization, VisIVO typically requires three steps: data importing, filtering, and visualizing.
The importing process converts the supplied datasets (originally in heterogeneous formats) into an internal
binary format. A VisIVO Binary Table (VBT) is a highly-efficient data representation used by VisIVO Server
internally. A VBT is composed by a header file (extension .bin.head) containing all necessary metadata, and a
raw data file (extension .bin) storing actual data values. The header may contain information about the overall
number of fields and number of points for each field for point datasets, or the number of cells and relevant
mesh sizes for volume datasets. The raw data file is typically a sequence of values, e.g., all X followed by all Y
values. The filtering process, performed with the VisIVO Filter tool, allows to perform several operations on the
data, this may include randomization or decimation to reduce the final resolution, mathematical or statistical
operators or commonly adopted cosmological post-processing analysis such as the three commonly used mass
assignment functions, i.e., the nearest grid point (NGP), the cloud-in-cell (CIC), and the triangular-shaped
cloud (TSC) methods. Finally, the visualization process creates multi-dimensional views from the data that
must fit the available RAM. The types of visualizations available include points, volumes and vectors, and
are based on the visualization Toolkit (VTK (7)). Figure 4 depicts the typical visualization pipeline of VisIVO
Server consisting on the application of the three main modules: VisIVO Importer, one or more VisIVO Filter(s),
and one or more VisIVO Viewers.

Figure 4: Typical visualization pipeline of VisIVO Server consisting of the application of the three main modules
on GADGET snapshots.

1VisIVO, https://visivo.readthedocs.io/
2https://www.ivoa.net/documents/
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Proposed solution VisIVO has already been deployed using Science Gateways to access distributed comput-
ing infrastructures (including clusters, grids and clouds) using containerization and virtualization technologies.
In this regard, it has been selected as one of the pilot applications deployed on the EOSCpilot infrastructure to
demonstrate that the tools can be accessed using gateways and cloud platforms and it has been deployed on the
European Open Science Cloud (EOSC), efficiently exploiting Cloud infrastructures and interactive notebooks
applications. Figure 5 presents one aspect of the evolution of the current Cloud deployment prototype (see the
left diagram) towards allowing workflow abstractions and integration on HPC clusters. This will exploit the
parallelization of VisIVO modules to handle large volumes of data more efficiently.

Figure 5: Evolution of the current Cloud deployment prototype (left diagram) toward allowing workflow ab-
stractions and integrating HPC clusters (right diagram) to better exploit the parallelization of VisIVO modules
thanks to the workflow abstraction offered by SPACE WP3 Task 3.1.

Workflow abstractions will allow a portable representation of the VisIVO modular applications and their
resource requirements, fostering reproducibility and maintainability to take advantage of heterogeneous HPC
facilities (including mixed HPC-Cloud resources) while minimizing data-movement overheads. In particular, we
would like to integrate VisIVO with StreamFlow and Jupyter, a workflow provided by SPACE WP3 Task 3.1
partners.

Functional requirements The use case evolution and the related implementation activities will align with
the following functional requirements:

• Enhance the portability of the VisIVO modular applications and their resource requirements. VisIVO
modules, i.e., importer, filter(s) and viewer, are being parallelized to further exploit HPC and Exascale
infrastructures. Improving its portability and potential of integration with other astrophysical pipelines
and computing resources will make VisIVO fully integrated within the scientists’ toolkit for its seamless
usage, abstracting from technical details and freeing astronomers to concentrate in scientific research.

• Foster reproducibility and maintainability. Visualization-aided data analysis often requires several param-
eter settings for pre-processing, plus the actual rendering of complex multidimensional datasets. Further-
more, in this era of Open Science, offering novel mechanisms and techniques to make scientific discoveries
reproducible and maintainable is a must, especially for enhancing scientific and technical collaborations.

• Take advantage of a more flexible resource exploitation over heterogeneous HPC facilities, including also
mixed HPC-Cloud resources. Because of the increasing size and complexity of astrophysical datasets,
there is a need for increasing the computing performances as well as the storage capacities for processing
and analysis tasks while maintaining the cloud software-as-a-service opportunities.

• Minimize data-movement overheads and improve I/O performances. The importer modules of VisIVO
rely on heavy I/O tasks for translating the astrophysical datasets to the internal VisIVO binary format
which is used by the VisIVO filtering and visualization modules. Therefore, minimizing the computing
costs of these I/O tasks could potentially improve the overall performance of the VisIVO pipelines.
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Future applicability to other codes This use case will be developed primarily for OpenGADGET. Still,
we expect to apply a similar methodology to other simulation codes of the SPACE CoE such as RAMSES (to
compare and analyse different cosmological hydrodynamic simulations) and PLUTO (to exploit its output data
format, which is fully compatible with VisIVO’s underlying technology, i.e. VTK (7)).
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Figure 6: Schematic view of a small slice of the data generated by a typical large cosmological simulation
from 2019 (in this case from the IllustrisTNG project), highlighting how the structures of interest inhabit a
high-dimensional space that is difficult to explore, visualize, and analyze. From left to right, the images show
the hierarchy of views of a single simulation run, from the entire time-evolving content of the full box (a), to
slices through several of the dozens of dimensions corresponding to physical variables of the particles (b), to
2D gas density and optical emission maps of a small subsample of galaxies (∼ 0.2% of the entire dataset; c), to
the detailed structure of a single 3D object (d). For this type of standard representation, the 6D phase space
structure of the point clouds representing each galaxy must be collapsed to 2D maps along specific directions
(individual images courtesy of the TNG Collaboration).

5 Machine Learning Use Cases

We describe the three main identified use cases for Machine Learning methods below.

5.1 Representation Learning for Explorative Knowledge Discovery in Simulations

Lead WP3 partner: H-ITS

Statement of the Problem Cosmological hydrodynamical simulations are excellent numerical laboratories
for understanding the formation of galaxies and large-scale structure. They provide a highly detailed realization
of structures in the Universe across a vast range of spatial and temporal scales, from shortly after the Big Bang
until the present day. The simulation outputs typically consist of more than one hundred snapshots of the
evolution of a large cubical representative region of the Universe containing all its main matter components:
dark matter, gas, stars, and black holes. These components are discretized in mass (using particles), volume
(using grid cells), or a combination of both. Each of these simulation snapshots is information-rich, including
the 6D phase-space positions and velocities, as well as dozens of physical properties (i.e. fields or channels) for
all components (e.g. gas density, temperature, metallicity, individual element abundances, etc.; see Fig. 6).

State-of-the-art large-volume cosmological simulations currently model the evolution of the Universe using
more than 1011 particles (see Fig. 7), allowing the formation of structures to be followed in detail across a
dynamic range of ∼ 7 orders of magnitude in both space and time. Their computational cost is extremely high,
currently on the order of 100M CPU hours, and their output datasets are measured in petabytes. This level of
data size and complexity already far exceeds the exploration, synthesis, and interpretation capacity of humans.
Moreover, architectures and I/O formats vary greatly across cosmological codes, imposing a barrier to applying
code-specific tools more generally to all cosmological datasets. In the Exascale era, simulations are expected to
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Figure 7: The extreme data challenge posed by the exploitation of cosmological simulations in the Exascale era.
The largest simulations today model the detailed evolution of galaxies and the cosmic web in a representative
volume of the Universe over cosmic timescales. This requires following more than 105 objects represented by
∼ 1011 resolution elements (particles and grid cells) across hundreds of individual snapshots in time, generating
petabytes of data. Exascale simulations will increase these numbers by a factor of one thousand. Their high
computational cost will require efficient extraction of the large amount of information that they contain. Our
exploration framework will be designed to work with very large datasets containing millions of objects, well
beyond what is currently possible (indicated by the orange shaded area). Figure adapted from (2).

increase in size (or resolution) by a factor of at least ∼ 103, rendering the traditional human- and code-centered
simulation exploration and analysis techniques obsolete.

The approach to the problem of increasing simulation data size and complexity has changed very little over
the past three decades since cosmological simulations became widespread tools. Simulation data is typically
represented in catalogs by first collapsing the rich multidimensional data onto a simplified zero-dimensional rep-
resentation (i.e. scalar values) of galaxy and Dark Matter halo properties. Examples of these representations
include stellar mass, morphology, half-light radius, mean surface brightness, bulge-to-disk ratio, hydrogen mass,
gas metallicity, halo concentration, and maximum circular velocity, among many others. This approach was
inspired by the data scarcity of observational astronomy, where in the case of large galaxy surveys it is much
more efficient to measure and analyze relationships between global galaxy properties (e.g. the Hubble diagram,
the galaxy main sequence, the mass-metallicity relation, the Tully-Fisher relation, the fundamental plane, etc.).
The same approach was used for the ‘extrinsic’ causes of these properties that are only available in simulations,
including halo mass and shape, environment, or assembly history. These properties may be expressed in 1D
(e.g. as radial profiles of the mass components, etc.) for a more fine-grained analysis of these structures. These
choices are based on simplifications assuming various symmetries necessary for analytical and semi-analytical
models of galaxy populations. All the simplifications above are no longer relevant in hydrodynamical simula-
tions, where the evolution of the 3D structure of galaxies and the cosmic web can be followed in detail from
their formation until the present day. The collapse of structures from > 3D to a single number or a 1D vector
wastes most of the detailed morphological data and potentially removes valuable information on the physics
behind the formation of galaxies and large-scale structure.

In addition to addressing the challenge of interpretability, if cosmological simulations are to adopt and follow
the ‘FAIR’ data principles, they should make their output data easily findable, accessible, and interoperable. Our
approach aims to address these additional requirements by enabling users to find existing datasets, interactively
explore them, compare them, and directly access their raw and post-processed data products.

Proposed Solution Representation Learning is a well-developed area of unsupervised machine learning that
aims to learn compact representations of complex high-dimensional data that efficiently compress the informa-
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tion with the goal of allowing easier visualization, exploration, and interpretation. This class of models offers a
powerful way to understand the intrinsic distribution of large datasets and to sample from it to generate new
data points. They can be trained using raw data, avoiding the costly need to produce labels.

Our proposed solution for this use case consists of a self-contained tool that takes the raw simulation data
as input, performs all the preprocessing under the hood, and trains a model to learn a compact interpretable
representation of user-selected structures, such as galaxies, in arbitrary physical components. For this, instead of
collapsing the galaxies to single scalars or 1D representations along arbitrary projections guided only by human
intuition, the concept will use a Generative Deep Learning algorithm to learn the most efficient representation
of simulated cosmological structures (and in particular galaxies) in a low-dimensional latent space. The latent
space dimensionality can be selected by the user and is guided by the requirement that it can be easily visualized
and explored by a human. This guarantees that the data can be inspected easily and interactively, even for the
largest cosmological simulations of the Exascale era. The galaxies in this reduced representation space can then
be further painted with the traditional global (scalar) properties to aid interpretation and enable knowledge
discovery. They may also be colored and annotated using latent representations of the extrinsic variables (like
formation history or environment) to find and investigate the causal drivers of observed galaxy properties. The
visualization is lightweight such that it can run on any laptop via a web server, and it provides the functionality
to interactively inspect and select subsamples of data for local analysis.

Understanding the intrinsic structure of galaxies and the physical processes that determine it is an active
area of current research within both observational and theoretical Astrophysics, highlighting the potential
applications of Generative Deep Learning. In addition to learning to represent the traditional 2D maps of
simulated galaxies (which originated from the need to produce synthetic observations to compare with real
data), we plan to extend our concept to learn galaxies’ full 3D (or even 6D phase-space) structure. Geometric
Deep Learning is a broad class of methods designed to incorporate knowledge of geometrical constraints in
the learning process. Graph Neural Networks (GNNs) are an example of this type of algorithm that can be
used to process irregular and sparse data that is represented by graphs. They efficiently capture the graph
structure of data, which is often very rich (and computationally prohibitive for standard Deep Learning),
and are particularly suitable for learning global permutation-invariant quantities. Because of their defining
characteristics, GNNs can be applied to any astrophysical data characterized by point clouds. These properties
make GNNs ideal tools for describing the> 3D structure of galaxies, dark matter halos, and large-scale structures
in cosmological simulations. Their potential has been demonstrated for cosmological analyses of the large-scale
matter distribution (i.e. the cosmic web), which traditionally focus on two-point (or higher-order) statistics that
can only exploit a subset of the available information content, and are computationally expensive. Using GNNs,
the properties of the cosmic web can be extracted without the information loss associated with summary
statistics. They can also be used to directly compare the clustering properties of simulations with existing
observational galaxy catalogs, allowing likelihood-free inference of cosmological parameters. We aim to employ
Geometric Deep Learning to describe galaxies and dark matter halos in their native dimensionality, using them
as inputs to learn compact, explorable, and interpretable representations of their structure as predicted by
cosmological simulations.

Functional Requirements With few exceptions, the largest state-of-the-art simulation projects struggle to
provide easy access to their data, and even if these are available to download from a cloud database, there is
a very high barrier to explorability and interpretability for anyone not directly associated with the projects.
This barrier results from the adoption of very heterogeneous data formats and standards by the major codes,
and by the development of code-specific postprocessing and analysis tools that are often also not findable and
accessible to outsiders. Overcoming these two major obstacles will require a solution that:

1. exploits the statistical power of Unsupervised Machine Learning, and specifically generative models, to
learn and create interpretable data representations that provide simple interactive exploration of entire
simulation datasets, and

2. does so in a code-agnostic way by operating on a universal representation of the simulation data that is
user-friendly (i.e. as matter components with physical attributes in standard unit systems), independent
of the I/O requirements, and requires no expertise in the simulation codes.

Achieving these goals will require the development of a workflow supported by a software toolkit with the
following general requirements and characteristics:
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• It must include utilities to generate a compact, low-dimensional representation of galaxy structure for all
the galaxies in a given simulation dataset using arbitrary user-selected physical properties. The represen-
tation should be easy to visualize and explore on a computer screen with minimal local computational
resources.

• The tool should automatically handle the selection and preprocessing of the simulation and training data,
with minimum user input. It should be flexible enough to accommodate the user’s needs and must include
options for using 2D (i.e. projected maps or images), or 3D or even higher dimensional (e.g. 6D) point
cloud representations of the simulated galaxies in an arbitrary number of channels (i.e. physical properties
like gas or stellar density).

• Using the trained model, the tool should efficiently render an interactive visualization of the entire content
of the dataset on the bounded latent space. This representation must enable the visualization of very large
galaxy catalogs by grouping nearby objects into tiles that display only the representative objects at each
level of the hierarchy, with the highest level displaying the entire dataset.

• The tool must enable interactive visualization of the hierarchical representation for both the input data
and the model reconstruction at every point on the sphere including panning and hierarchical zoom on
specific regions to examine different classes of objects.

• The functionality of the tool should be first demonstrated using the largest simulation datasets currently
available.

• For its applicability to Exascale cosmological simulations, it is essential that the performance of the
software scales well with dataset size, up to 108 galaxies and even beyond.

Future applicability to other codes We aim to develop the representation learning and analysis frame-
works to be able to agnostically ingest and represent the data from any large cosmological simulation of the
Exascale era, regardless of the simulation code used to produce the output and the technical details of the
simulation. This effectively removes the requirement for the user to have in-depth technical knowledge about
specific codes and data formats. The initial prototype will be developed to work with a single code for testing
purposes, but the long-term goal is to include wrappers to translate the output of all codes involved in the
project to a common abstract and user-interpretable input data format. The tool will have applicability to all
codes that are currently used for cosmological hydrodynamic simulations, namely RAMSES, OpenGADGET,
and Changa/Gasoline.

Even beyond the broad applicability to most current cosmological simulation codes, we expect that the tool
will be useful more generally to analyze data from simulations that model the time evolution of a fluid in a fixed
volume of space. The tool could be applied to many of these codes with the aim to identify and characterize
specific emergent phenomena, such as turbulent and magnetic field structures and shocks in astrophysical fluid
dynamics simulations with the PLUTO code, or electron flows in plasma simulations with the iPic3D code.

5.2 Physics-informed reconstruction using synthetic observations of cosmological
simulations

Lead WP3 partner: BSC

Statement of the problem One of the main goals of cosmology is to understand how the diversity of com-
plex structures that we observe today, from the smallest to the largest scales, emerged over cosmic timescales
from tiny initial fluctuations in the early Universe. Observations of the early Universe have provided detailed
knowledge of the initial conditions for structure formation, while observations of nearby galaxies show the end
result of this process. However, observations provide only a very limited 2D view of these structures, severely
limiting our ability to reconstruct their physical properties and formation processes. Simulations have provided
an unparalleled statistical overview of the complex physical processes that shape galaxies, but it is not yet
possible for these models to make predictions for specific objects. This is because we do not know how to
connect the initial conditions to the galaxies they give rise to.
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This type of inverse problem, where the goal is to reconstruct the physical properties (e.g. structure and
history) of an object based on limited information, is highly degenerate due to the loss of information in the
observation (forward) process. This makes its solution formally intractable. This has been traditionally ad-
dressed by approximating galaxies using extremely simplified models with only a few components, and then
performing parameter inference by fitting the simple models to the observational data. This method is limited
by the numerous simplifying assumptions and by the ambiguity in the choice of number of components (or
parameters) that determine its capacity to fit the data. A hybrid approach that combines the predictive power
of large-volume hydrodynamical cosmological simulations and the increasing amount of observational data may
offer a promising solution to these limitations. This requires the flexibility of state-of-the-art deep learning
methods to learn complex high-dimensional mappings between physical properties and synthetic observations.

This use case will start working on a very specific scientific question which aims to close this gap between
observational and simulation methods. It focuses on the measurement of the Intra Cluster Light (ICL), which
is the faint and diffuse light observed in the vast spaces between galaxies within galaxy clusters. In principle it
is possible to determine the ICL distribution in a cluster from observation data, given that several assumptions
on the light profile are made. However, results dramatically differ for slight variations of the assumptions taken,
which highlights the importance of identifying ICL by dynamical means both in simulation and observational
data. To achieve this, and as a first step, the methodology will utilize a line-of-sight velocity dispersion map
(available in observational data) to compute the ICL distribution using deep learning. This approach offers a
dynamic and robust means of characterizing the ICL, providing a more consistent representation of its distri-
bution within galaxy clusters. Once this is validated, we will explore the exportation of the same methodology
to other domains, always attempting to reconstruct galaxy/cluster physical properties such as mass, accreted
fraction, merger histories and trees from observable variables.

Proposed solution The increase in computational power expected in the Exascale computing era will enable
cosmological simulations to include more important physical processes at higher resolution, as well as mod-
elling larger volumes and more diverse galaxy populations. The task of using the simulations to reconstruct
galaxy properties requires a universal machine learning tool that can read the raw simulation data and pro-
duce synthetic maps of observables such as multi-band images, velocity moment maps, metallicity maps, and
even position-position-velocity datacubes for the stellar and cold gas components, among many others. The
tool should offer the flexibility to select among different deep learning methods (specialized for handling image
data) depending on the specific reconstruction task. It would allow the user to select the input maps (i.e. the
features) and the desired output reconstruction, including physical properties such as mass, 3D structure, pro-
genitor properties, origin and mass fraction of each component, merger tree, etc. Once trained on the millions
of galaxies in the simulation, the tool can be applied to observational data to obtain the target properties of
real galaxies.

To advance towards the development of such a general tool, we will follow a modular approach, starting by
focusing on the reconstruction of a specific set of galaxy/cluster physical properties (i.e: ICL) from different
maps of observables. This will constitute a first prototype, which will function as a standard deep learning
model. As input we will feed an observable and as output we expect the reconstructed cluster property. Then,
following the same procedure we will extend it to the reconstruction of other galaxy/cluster physical properties
such as mass, accreted fraction, merger histories or trees from maps of observables. Thus, this second prototype
will allow users to select the simulation or physics model, the objects (galaxies or clusters), the observables
(maps and vectors/scalars), and the regression variables they want to infer (maps of ICL fraction, merger trees,
etc).

Functional requirements The methodology, based on previous work, consists in the following pipeline:
First, a sample of clusters among the most massive are selected from a zoom-in cosmological hydrodynamical
simulation. Then, mock images of the galaxy clusters are created, which mimic the observational conditions of
a hypothetical observation by a state-of-art integral field spectrograph (see Figure 8). Finally, data augmen-
tation is performed on the original dataset, plus some treatment of contaminants (i.e: interlopers) by masking
substructures in the images. The resulting dataset is composed of line-of-sight velocity dispersion and ICL mass
fraction maps, which are then divided into training, validation and test sets.
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Figure 8: Examples of the mock images. In the left panel, there is the velocity dispersion map, and in the right
panel the ICL mass fraction from a randomly extracted halo.

The next step is the training of deep learning models on this data. Following the use-case’s previous work, we
begin with the U-Net and Attention U-Net architectures, which are a common choice for pixel-wise regression
and which we will use as a baseline. Then we will test against this baseline other architectures and more modern
techniques such as Generative Adversarial Networks (GANs), autoencoders, and diffusion models. The goal for
the first prototype is to improve on the results of the use-case’s previous work to obtain a model capable of
reconstructing ICL maps with high accuracy from the velocity dispersion maps. The limitation is the amount
of data that we have at out disposal, for only a handful of the structures we are interested in (massive clusters)
appear on each simulation run. To deal with this we will produce mock images from different positions and
use other data augmentation techniques. We will also put a focus on making the predictions of the regression
models robust to the possibly large uncertainties in the simulations.

Once this is validated, we will generalize this methodology to reconstructing other galaxy/cluster physical
properties such as mass, accreted fraction, merger histories and trees from maps of observables.

Future applicability to other codes The initial prototype will be developed to work with simulation
data coming from OpenGADGET. However, we expect most of the methods developed to have applicabil-
ity to all codes that are currently used for cosmological hydrodynamic simulations, namely RAMSES and
Changa/Gasoline, given that the training will be performed mainly with mock images and that standard codes
to produce mock images can be adapted to other codes with small modifications.

All models we develop will be made publicly available. By working with containers we will ensure that the
results are reusable and reproducible, and that they can be integrated with other tools.

5.3 Predicting the effect of radiation on gas cooling rates on-the-fly in hydrody-
namical simulations

Lead WP3 partner: BSC

Statement of the problem Numerical methods based on High Performance Computing (HPC) have now
established themselves as central tools for modelling complex systems. This is particularly the case in the
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fields of astrophysics and cosmology. These methods are now the essential tool for theoretical laboratories
that enable scientists to investigate, interpret and ultimately understand the physical processes in our observed
universe, laying the foundation for new, spectacular scientific discoveries. For these numerical experiments and
data evaluations, efficient and effective use of extreme computing power, in the Exascale range, is essential. In
particular, sub-grid models for cooling and star formation are among the most complex sub-areas needed to cor-
rectly describe astrophysical systems. The cooling function can be very complex as it depends on various local
properties of the gas (such as temperature, density, chemical composition, shape and strength of the local and
global radiation fields). Since the calculation of the energy loss rate involves very complex physical processes,
it is necessary to use pre-calculated values. However, this calculation needs to be further simplified because
interpolation in the large parameter space within the simulation is too data intensive. Here, new interpolation
methods as well as ML methods open the door to make highly precise cooling functions available for cosmolog-
ical simulations, where the complete local description of the gas is used to evaluate the energy loss processes.

Machine learning methods have recently been used in the literature to estimate cooling rates with promising
results. However, these studies used actual hydrodynamic simulation data as training data sets to investigate
how cooling rates depend on various parameters such as gas temperature, density, metallicity and radiation
fields. While this method significantly reduces the amount of training data, it can be problematic when the gas
cells/particles in the simulation do not sample the parameter space well. For example, gas at the cooling peak
(e.g., shock/feedback heated gas at temperature ∼ 105K and relatively high density n > 1 cm−3) often lives
extremely shortly in the density-temperature parameter space before it gets cooled to a different temperature,
thus sampled very poorly in actual simulation data. As a result, the neural network trained from one snapshot
can be highly specific and may not be accurate enough for a different time step, which implies that one needs
to always run the simulation first for the training, then run it again to incorporate the more accurate cooling
function. This is numerically expensive and becomes infeasible when applied to Exascale cosmological simula-
tions.

A more straightforward way is to train neural networks with pre-calculated tables from radiative transfer
codes such as CLOUDY. Such tables usually cover the parameter space reasonably well. For cosmological
simulations without radiative transfer, the cooling table is often only a function of gas temperature, density and
redshift (to capture the uniform extragalactic radiation field), and thus relatively small in size. The standard
practice is that the metal cooling and heating rate of the gas is obtained by simply interpolating CLOUDY tables
during runtime. However, the inclusion of local radiation field in modern radiative transfer simulations increases
the dimentionality tremendously in order to capture the intensity and shape of the radiation field which varies
significantly both spatially and temporally. A uniform grid CLOUDY table is not only memory intensive but also
too computing intensive to be interpolated on the fly. Even with ML methods, such training data set may still be
too large to have feasible training time. One way to mitigate this problem is to create unstructured data points
for sampling the cooling function, instead of using a uniform grid table. This can reduce the size of the training
set significantly. One of the science partners within the SPACE CoE has recently developed such tool (CHIPS:
Cloudy based Heuristic and Interactive Parameterspace Sampler,https://github.com/Vetinar1/CHIPS), which
can be applied to create an optimal unstructured training data set for ML methods. The lead group of this use
case, the Large-scale Computational Fluid Dynamics group of the BSC will investigate the use of training sets
generated by CHIPS in implementing a run-time, ML-based pipeline for gas cooling prediction.

Proposed solution Previous experience of the BSC team is in the integration of CFD and ML to accelerate
the prediction of urban air flows. In that sense, ML methodologies exploiting high-fidelity CFD simulation data
have been explored to help satisfy the need for fast flow predictions in various applications, including urban flow
prediction whose physics are similar to those in the present use case. In previous projects, we have used deep
neural networks to provide real-time and reliable predictions for urban emission dispersion of contaminants. The
proposed strategy was based on two sequentially coupled DNNs which covered the necessary steps to provide
the pollutant concentration and dispersion evolution prediction.

Following this previous experience, the activities in SPACE will cover several research areas, ranging from
the numerical algorithms to the software interface between the A&C codes and ML libraries. Indeed, it is non-
trivial to efficiently couple A&C solvers developed using low-level compiled languages, e.g., Fortran, C/C++,
with ML libraries based on high-level interpreted languages such as Python. While this can be accomplished
through Unix sockets or message-passing interface (MPI), in the current setup we will employ the SmartSim
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library (https://github.com/CrayLabs/SmartSim). SmartSim allows communication between processes through
an in-memory Redis database with minimal overhead and, compared to the previously mentioned approaches,
it lowers the software complexity of the framework. The novel algorithms will be assessed by computing basic
test cases, but representative of challenging A&C problems, and the performance of the ML-enhanced methods
will be compared to classical and well-established approaches from the literature. The capabilities of the
new and highly scalable A&C-ML coupling strategies will be tested on several platforms, including massively
parallel hybrid CPU/GPU architectures. With the use of SmartSim we can exploit the power of accelerated
HPC architectures even when the simulation code runs in a CPU-based cluster. Hence, we can use graphics-
processing units (GPUs) to efficiently exploit ML algorithms, while the A&C can run traditionally using MPI
and the central-processing unit (CPU) part of a cluster node.

As a first step, we will implement this solution to run on run-time with the A&C code Changa. This will
involve:

• identify suitable parts of the code to be accelerated by the run-time ML modules.

• Generate suitable training databases. As a starting point, we will use CHIPS.

• Select the best suited CNN architecture based on the requirements of the code.

Functional requirements

• Accuracy: must be significantly more accurate than existing tabulated cooling estimators or analytical
functions, and should approximate reasonable accurately the CLOUDY results (used as validation data).

• The method must satisfy the following computational constraints: 1) it must be extremely fast to execute
due to the need to call it at every time step of the simulation, for millions of calls. 2) it must use limited
space in memory to allow execution on current HPC distributed memory architectures. 3) it must be
competitive with traditional approaches, including tabulated estimators (9; 10; 11) or analytical functions
(e.g. 12) which sacrifice accuracy in favor of computational efficiency.

Future applicability to other codes This use case will be developed based on the Changa simulation code.
Since it is devised to be a run-time implementation, given the characteristics of the problem, the adaptability
of the resulting tool to other simulation codes might not be as straight-forward as with the other use cases
mentioned in this document. Porting the framework to other simulation codes will involve changes to the codes,
plus identifying the parts suitable for replacement or adaptation. However, given the similarities between
Changa and OpenGADGET, a future implementation of the tool in the latter involving reasonable effort might
be possible and will be assessed during the development of the framework.
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6 Workflows Use Cases

6.1 Topology-aware workflows for modular Exascale data analysis

Lead WP3 partner: UNITO

Statement of the problem This use case will develop coordination semantics to design modular HPC
applications for the next generation Exascale machines. This approach will allow a topology-aware co-scheduling
of loosely-coupled components of the complex Exascale data analysis applications, allocating each component to
the execution architecture that best fits its resource requirements, e.g. burst-buffers for I/O-bound operations,
or hardware accelerators for high-performance matrix operations. In this setting, workflow abstractions allow
a portable representation of modular applications in terms of atomic components, their resource requirements,
and their mutual (data/control) dependencies, fostering reproducibility and maintainability. Still, conventional
workflow models fail to capture the details of the underlying execution environment, leaving the mapping of
steps onto processing elements entirely to the runtime scheduling layer.

Existing work or prototypes UNITO is working on topology-aware workflows, i.e. workflow graphs aug-
mented with a high-level representation of the resource topology, to support more advanced orchestration
techniques that take advantage of heterogeneous HPC facilities while minimising data-movement overheads.
In particular, the StreamFlow framework (13) (https://streamflow.di.unito.it/) is a container-native Workflow
Management System (WMS) based on the Common Workflow Language (CWL). It is founded on two main
principles:

• it supports the concurrent execution of multiple communicating tasks in a multi-agent ecosystem by
enabling the execution of tasks in multi-container environments;

• it empowers hybrid workflow executions on top of multi-cloud or hybrid Cloud-HPC infrastructures by
relaxing the requirement of a single shared data space.

StreamFlow declaratively describes cross-application workflows with data dependencies, complex execution
environments composed of heterogeneous and independent infrastructures, and mapping steps onto execution
locations. The hybrid workflow approach enables the deployment of different, potentially distributed workflow
steps (e.g., MPI, TensorFlow) onto different modules (e.g., HPC facilities, Cloud VMs, Kubernetes). Stream-
Flow allows the seamless integration of new modules and deployment methods through self-contained plugins.
The topology awareness emerging from these workflow models allows StreamFlow to implement locality-based
scheduling strategies, automated data transfers, and fault tolerance.

On Fig. 9, representing the StreamFlow logical stack, can be seen that it needs three different types of inputs:
workflow descriptions, location topology descriptions and a StreamFlow file with the step-location mapping.
Before the actual execution of a step, it is necessary to complete three different tasks:

• deploy the locations when needed, done by Deployment manager;

• select the best locations to execute each step while guaranteeing that all requirements are satisfied, per-
formed by Scheduler; and

• assure that each location can access all the data dependencies required to complete the assigned job,
performing the data transfer only when necessary, carried out by Data manager.

Exploiting the features of StreamFlow, this use-case will develop suitable coordination semantics to express
(and optimise) parallel workflow patterns typically used to design HPC applications. Moreover, the StreamFlow
(https://streamflow.di.unito.it/) framework, currently used in the EuroHPC ACROSS and EUPEX projects,
will be extended to orchestrate modular HPC applications on Exascale architectures.

The other tool UNITO is working on, relying on StreamFlow workflow management system, is Jupyter
workflow (14) (https://jupyter-workflow.di.unito.it). It is an extension of the IPython kernel designed to support
distributed literate workflows. The Jupyter workflow kernel enables Jupyter Notebooks to describe complex
workflows and execute them in a distributed fashion on Hybrid Cloud HPC infrastructures. In particular,
code cells are regarded as the nodes of a distributed workflow graph. In contrast, cell metadata are used to
express data and control dependencies, parallel execution patterns (e.g., Scatter/Gather), and target execution
infrastructures (e.g., HPC facilities, Cloud VMs, Kubernetes). Relying on cell metadata to describe workflows
has several significant advantages:
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Figure 9: The StreamFlow logical stack.

• it maintains a clear separation between host and coordination semantics, improving the readability and
maintainability of complex applications;

• it avoids technology lock-in: the same metadata format can be interpreted by different Jupyter kernels
to support more languages (other than Python), specific execution architectures, or commercial software
stacks; and

• it smooths the learning curve of stand-alone workflow systems. Users familiar with Jupyter Notebooks do
not have to learn a new framework to scale their experiments.

Functional requirements The heterogeneity and complexity of modern applications force monolithic ap-
proaches to give way to modular architectures and patterns for designing and developing software, of which
workflow models are first-class representatives. In the same way, heterogeneity in contemporary hardware
resources (e.g., highly parallel hardware accelerators, low energy-consuming FPGAs, or application-specific
quantum solvers) fosters modular approaches in designing execution environments for such applications. Hy-
brid workflows, depicted by StreamFlow framework, represent an essential methodological step in this direction
and provide the following features:

• generalization of the concepts of portability and reproducibility from the application plane to the entire
execution process.

• better cooperation between domain experts, who write the application logic, and computer scientists, who
find the best execution environment for each workflow step according to specific requirements (e.g., in
terms of cost, time-to-solution or energy consumption), obtained by the separation of concerns brought
by hybrid workflows. Additionally, both of them are free from the burdens of managing applications
deployment and life-cycle and writing explicit data transfer logic, enhancing productivity.

• automatic cross-stack executions of independent steps, providing a trivial way to offload tasks in urgent
computing scenarios thanks to loose mapping relation between steps and locations.

Proposed solution In SPACE we plan to start with the integration between VisIVO and StreamFlow (see
also Section 4.3). First, we intend to support the concurrent execution of multiple communicating tasks in a
multi-agent ecosystem by executing the different VisIVO modules in multi-container environments. Second, we
will be able to obtain hybrid workflow executions on top of multi-cloud or Hybrid Cloud HPC infrastructures.
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The hybrid workflow approach will allow for the deployment of the different distributed VisIVO workflow steps
into different modules. Additionally, it will exploit the topology awareness emerging from the VisIVO workflow
models allowing StreamFlow to implement locality-based scheduling strategies, automated data transfers, and
fault tolerance. Furthermore, we will increase the reproducibility and provenance of our VisIVO workflows
thanks to the Common Workflow Language (CWL) used by StreamFlow and all its related platforms e.g. the
workflow Hub and the RO-CRATE and supports also other workflow managers like Galaxy, Airflow.

Additionally, we plan to investigate the Jupyter workflow kernel to describe the VisIVO workflows and
execute them in a distributed fashion on Hybrid Cloud HPC infrastructures aiming to improve the usability,
readability and maintainability of VisIVO applications. Moreover, we expect this integration to improve the
application scalability to better exploit the heterogeneity of the underlying computing resources.

Future applicability to other codes or other workflows for different use cases As the visualization
and ML use cases explained in this document begin to be developed, we will interact with the development and
research teams to identify opportunities for building workflows on parts or the whole processes.
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7 Conclusions

The SPACE ML, visualization and workflow use cases and requirements reports on the process, methods, tools
and results of the work performed in the identification of use cases and requirements for visualization, ML-
assisted analysis and workflows. This work will be central to the future development of such tools for the
duration of the project, as it provides the base layer of technical, non-technical and functional constraints,
requirements, and needs of the code developers and users. While the core definitions of the use cases should
remain the same, the requirements and technical characteristics of the data analysis solutions to be developed
in WP3 might change and adapt in the development phase. This document will also be the basis of the future
deliverables D.3.2.”SPACE Visualization data analysis and workflow framework #1 Release” and D3.3.”SPACE
ML framework #1 Release”, which will report about the work developed in each area until M30, as well as
of the final reports D3.4.”SPACE Visualization data analysis and workflow framework Final Release” and
D3.5.”SPACE ML framework Final Release”, due in M48.
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A Appendix I

The template document to collect Input/Output information of each WP1 exascale application is shown in the
following page.

Page 30 of 40
This document is Public (PU)

and was produced under SPACE project EU GA 101093441



SPACE Codes I/O specs Template

OUTPUT #1

OUTPUT #2

NOTES: 

Effective bytes per element
FORMAT
CONFIGURABLE
I/O INTERFACE

Nr. of elements
Nr. of files per set
Nr. of sets

0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 #DIV/0! #DIV/0!

Nr. of elements
Nr. of files per set
Nr. of sets

0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 #DIV/0! #DIV/0!

Nr. of elements
Nr. of files per set
Nr. of sets

0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 #DIV/0! #DIV/0!

NOTES: 

Effective bytes per element
FORMAT
CONFIGURABLE
I/O INTERFACE

Nr. of elements
Nr. of files per set
Nr. of sets

0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 #DIV/0! #DIV/0!

Nr. of elements
Nr. of files per set
Nr. of sets

0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 #DIV/0! #DIV/0!

Nr. of elements
Nr. of files per set
Nr. of sets

0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 #DIV/0! #DIV/0!

CASE 1

CASE 2

CASE 3

CASE 1

CASE 2

CASE 3

lower bound upper bound

lower bound upper bound lower bound upper bound lower bound upper bound lower bound upper bound

lower bound upper bound

lower bound upper bound lower bound upper bound lower bound upper bound lower bound upper bound

lower bound upper bound

lower bound upper bound lower bound upper bound lower bound upper bound lower bound upper bound

lower bound upper bound

lower bound upper bound lower bound upper bound lower bound upper bound lower bound upper bound

lower bound upper bound

lower bound upper bound lower bound upper bound lower bound upper bound lower bound upper bound

lower bound upper bound

lower bound upper bound lower bound upper bound lower bound upper bound lower bound upper bound

Size per set
(GB)

Total size
(GB) Toal Nr of files

Avg File size
(GB)

I/O Rate
(GB / hour)

Size per set
(GB)

Total size
(GB) Toal Nr of files

Avg File size
(GB)

I/O Rate
(GB / hour)

Size per set
(GB)

Total size
(GB) Toal Nr of files

Avg File size
(GB)

I/O Rate
(GB / hour)

Size per set
(GB)

Total size
(GB) Total Nr of files

Avg File size
(GB)

I/O Rate
(GB / hour)

Size per set
(GB)

Total size
(GB) Total Nr of files

Avg File size
(GB)

I/O Rate
(GB / hour)

Size per set
(GB)

Total size
(GB) Total Nr of files

Avg File size
(GB)

I/O Rate
(GB / hour)



All the collected tables of Input/Output information for each code of the SPACE project, provided by WP1
and WP2, are available on Google Drive at the following link: https://docs.google.com/spreadsheets/d/
1a-JHvbmPBK2q_V3EcLMySEqXIEXz_YVXu8NSmUvisAQ/edit?usp=sharing

Page 32 of 40
This document is Public (PU)

and was produced under SPACE project EU GA 101093441

https://docs.google.com/spreadsheets/d/1a-JHvbmPBK2q_V3EcLMySEqXIEXz_YVXu8NSmUvisAQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1a-JHvbmPBK2q_V3EcLMySEqXIEXz_YVXu8NSmUvisAQ/edit?usp=sharing


D3.1 – SPACE ML, Visualization and workflow framework use cases and requirements

B Appendix II

The Google Form questionnaire used to gather the user needs and requirements in ML, visualization and work-
flows from WP1 partners is available at the following link:
https://docs.google.com/forms/d/e/1FAIpQLSf7eY90nnY5IpLlVH13kwzCbk1kmEe8NfrvSu6DhIs7dzi9hg/viewform.

The template questionnaire is also shown in PDF format in the following pages.

All the responses to the questionnaire are available as a spreadsheet in the following link:
https://docs.google.com/spreadsheets/d/1BLpq0lkYcQxd4jslta2HLusMiGyqH1Wl/edit?usp=sharing&ouid=

113154209904236217999&rtpof=true&sd=true. Personal information, such as the name and email, has been
deleted from the spreadsheet and substituted by an ID code.
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1. Email *

1. Scientific use case
General description of your case

2.

3.

4.

5.

6.

WP3 - Visualization and ML Use cases. 
User requirements
Instructions

Please �ll out this form once per each use case (for different codes, or different applications of the same code) that are of 
interest to you in one or more of these aspects:

Use visualization to explore/analyze data
Use visualization to present/disseminate/communicate results
Opportunities for Machine Learning-assisted analysis
Envisioned challenges when ported to exascale

Contact name and institution

What is the name of the simulation code used? *

Add a feference to the publication (if published), or provide brief context.
*

What is the scientific or research question? And why is the simulation essential to answer it?



2 A- Visualization
Fill in this section only if relevant for your case

7.

Seleziona tutte le voci applicabili.

Exploratory Visual Analysis (Navigate through the data to understand it)
Produce support �gures for presenting results (static or videos)

8.

9.

10.

11.

Altro:

Seleziona tutte le voci applicabili.

Charts (scatterplots, boxplots, barcharts, histograms, etc.)
2D cuts
Particles
3D volumes, Isosurfaces, Streamlines

Main use.

What do you mainly use visualization for? (Mark option below)

Visualization Tools
Do you already use any visualization tool? (Yt, pynbody, Paraview, OpenSpace, VisIVO, proprietary, none, ..) Which
one?

Are the tools you’ve tried not sufficient for your needs? why?

Are you planning on adopting an existing tool that may suit your needs? Which one and why?

Mark below the types of data visualizations that you produce more often or find more useful



12.

13.

Altro:

Seleziona tutte le voci applicabili.

File size or computational mesh are too big to store in disk
in-situ visualization is required
Dimensionality is too high
Spatial resolution is too sparse

14.

2 B- Machine Learning assisted analysis

Fill in this section only if relevant for your case

15.

16.

As a reference for us, add links to images, papers, documents, etc. of
- Plots that you make
- Plots you'd like to make (made by others from similar simulations/results

Mark the most relevant challenges (current or potential) to visualize your data

What would you like to use visualizations for, that you can’t now?

Current use of ML
Do you currently perform any ML-assisted analysis? Which?

Desired (Already identified potential uses of Machine Lerning) Which?



17.

Altro:

Seleziona tutte le voci applicabili.

feature exploration (i.e. �nding most relevant variables/properties)
object detection/segmentation (e.g. identifying galaxies or merger events)
dimensionality reduction (feature selection/extraction, clusters, dominant trends/correlations, PCA, Reduced Order

Models)
�nding interesting predicted phenomena/objects or outliers
optimize postprocessing
generate mock catalogs for observers
Runtime computing (e.g. subgrid physics modeling, gas cooling function)

18.

2 C- Exascale 

19.

20.

Altro:

Seleziona tutte le voci applicabili.

data size
output cadence
high dimensionality
runtime

3. Output data
Characteristics of the output data

21.

Mark potential applications of ML of interest to your case

Why is the ML-assisted analysis in this case necessary/beneficial to address the scientific/research question?

Example of envisioned code use

Mark potential challenges of porting to exascale, if any

File characteristics
Current format? Is it convertible to hdf5?



22.

Contrassegna solo un ovale.

yes

no

23.

24.

25.

Altro:

Seleziona tutte le voci applicabili.

Particles
FVM
FEM
AMR
OpenVDB

26.

27.

28.

29.

30.

Has Metadata/Description?

Approximate size (average per file or approximate total per run)

Data type (single, double, quad precision)?

Structure

Are there post-process outputs beyond the raw output (e.g., halo catalogs)?

Time
What is the simulated time span?

What is the typical post-process/snapshot frequency?

What is the estimated optimal temporal resolution to visualize results (e.g. effects are visible in a span of x decades
with a frequency of x centuries) and how does this relate to time steps?

Spatial Resolution

What is the Spatial scale and the Spatial Resolution? Is the discretization of the space uniform or multi-resolution?



31.

32.

Altro:

Seleziona tutte le voci applicabili.

Several runs with different parameters
Distributions/ evolution within a single run

33.

THANK YOU!

Variables/Fields

Which are the most relevant or typically used for analysis/visualization?

Do you compare several runs with different parameters? or distributions/ evolution within a single run?

Is there sample data of this case already available for use in Visualization or Analysis?



C Appendix III

The table 1 illustrates the relations between desired solutions and existing lines of work. It contains a line for
each response submitted by the partners to the questionnaire presented in Section 2.1.2. The columns of the
table contain: the code name, main interests in visualization or ML, and possible matches among the solutions
offered by the WP3 partners, as described in this deliverable.

Visualization ML
SPACE Code Requirements WP3 Use Case Requirements WP3 Use Case

RAMSES 3D visualiza-
tion/Paraview

See Section 4.3 Identify structures
(haloes, galaxies, disks,
mergers), dimensionality
reduction, cooling rates

See Section 5.1

OpenGADGET NONE – Accurate cooling rate val-
ues

See Section 5.3

OpenGADGET Cinematic visual-
ization/Blender

See Section 4.2 Identify galaxies more pre-
cisely (or faster)

–

OpenGADGET NONE – Mock images of galaxy
clusters

See Section 5.2

Changa/Gasoline2 Higher quality im-
ages / streamlines

See Section 4.1 Gas cooling rates See Section 5.3

iPic3D NONE – Advanced shape recogni-
tion tools (unsupervised
classification of shapes
and meaning of particle
distributions)

See Section 5.1

PLUTO 3D rendereing and
CLI

See Section 4.3 Identification of critical
regions for adaptive (2nd
- 4th) order integration

See Section 5.3

BHAC NONE – – pending
FIL NONE – – pending

Table 1: Summary of questionnaire requirements in visualization or ML and possible matches among the
solutions offered by the WP3 partners.

All complete information can be accessed at the following link: https://docs.google.com/spreadsheets/
d/1pjY_ET98BxqmUyrHshrGqAyLqwA3UvtBLZ55nwcBPX0/edit?usp=sharing
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