—
SHPARCE

SCALABLE PARALLEL ASTROPHYSICAL CODES FOR EXASCALE

Performance profiling and
benchmarking

Deliverable number: D2.1

Version 1.0/1.0

Co-funded by S
the European Union S

Funded by the European Union. This work has received funding from the European High
Performance Computing Joint Undertaking (JU) and Belgium, Czech Republic, France,
Germany, Greece, Italy, Norway, and Spain under grant agreement No 101093441

Project Information

Project Acronym: SPACE
Project Full Title: Scalable Parallel Astrophysical Codes for Exascale

Call: Horizon-EuroHPC-JU-2021-COE-01
Grant Number: 101093441
Project URL: https://space-coe.eu

Document Information

Editor: Lubomir, Riha - IT4I@QVSB, Sijing, Shen - UiO
Deliverable nature: Report (R)

Dissemination level: Public (PU)

Contractual Delivery Date: | 31.10.2023

Actual Delivery Date 03.11.2023

Number of pages: 133

Keywords: performance analysis, POP methodology, region analysis
Authors: Andrea Mignone, Marco Rossazza — UniTo

Radim Vavrik, Kristian Kadlubiak — IT4IQ@VSB
Ondrej Kozinski, Tomas Panoc — IT4I@VSB

Benoit Commergon, Tristan Coulange — CRAL CNRS
Geray Karademir — LMU

Khalil Pierre, Georgios Doulis — GUF

Robert Wissing — UiO

Luca Tornatore — INAF

Harikrishnan Aravindakshan — KU Leuven

Peer review: Matthieu, Kuhn — Eviden
Manolis Ploumidis, Manolis Marazakis — FORTH

History of Changes

Release Author, Organization Description of changes
01.08.2023 Lubomir Riha, IT4IQVSB | Started the document and setup of the
document structure.
0.8 15.09.2023 all authors Version for reviews.
0.9 02.11.2023 all reviewers and all au- | Text updated based on reviews.
thors
1.0 03.11.2023 Lubomir Riha, IT4IQVSB | Final edits before submission.

https://space-coe.eu

. -

Scalable Pa‘raIIeI AstrophyS|caI Codes

for Exascale

DISCLAIMER

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European High Performance Computing Joint Undertaking (JU) and Belgium, Czech
Republic, France, Germany, Greece, Italy, Norway, and Spain. Neither the European Union nor the granting
authority can be held responsible for them.

UNIVERSITA

DI TORINO

& @8% UNIVERSITY
117 OF OSLO

=VIDEN

an atos business

*
@ nar CINECA | v LEUVEN

DI ASTROFISICA

LUDWIG-
MAXIMILIANS-

UNIVERSITAT
MUNCHEN

FOUNDATION FOR RESEARCH AND TECHNOLOGY - HELLAS

S7HITS

Heidelberger Institut fiir
Theoretische Studien

II

COMPUTER
ENGINEERING

Barcelona
Supercomputing

Center

Cantro Nacional de Supercomputacién

GOETHE @:

UNIVERSITAT

FRANKFURT AM MAIN

(8) ENGINSOFT

The space above and below the message intentionally is left blank.

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

Executive Summary

The main goal of this deliverable is to provide performance assessments of the SPACE CoE codes and identify
the regions of the codes that can be potentially extracted as mini-applications or kernels and optimized in the
following activities of the WP1 and WP2. To evaluate the scalability and efficiency of specific performance
aspects in the SPACE CoE parallel codes, we use a performance model and analysis methodology developed
within the POP and POP2 Centers of Excellence [1].

We consider this as a crucial point for two main reasons. The first one is that the POP methodology [2]
can be considered a standardized approach to evaluate the performance of parallel codes and, as such, it allows
one to compare the parallel performance metrics between different applications coming from different scientific
domains and also using different programming models. For example, the POP methodology can provide the
same efficiency metrics for MPI, MPI+OpenMP, or MPI4+CUDA acceleration programming models. In order
to strengthen the upcoming collaboration with POP3 CoE, all codes were instrumented and traced using state-
of-the-art European performance analysis tools also used by POP. Furthermore, we are immediately ready to
collaborate in a very efficient way with POP3 CoE, once an in-depth analysis will start, as we can directly
provide the traces produced in the frame of this study to POP experts.

Description of the POP methodology and the subset performance metrics that have been used in this
deliverable is presented in Section 1. In addition we also present all tools used and the tracing procedure. We
employed the POP tools on all codes with the exception of ChaNGa, because it is written in Charm++ and
POP tools at this point do not support this PGAS implementation. In this particular case we used special tools,
Projections, described in Section 1.3. This section also describes the specific measure we adopted to analyze
ChaNGa.

The summary of all experiments performed for this deliverable is shown in the table bellow. The table also
contains links to the sections of particular codes. The important fact is that we have several strong scalability
points to evaluate to see the trends in the POP metrics as one increases the level of parallelism.

Code link Programming model used for D2.1 | Strong scaling [nodes] x (procs/threads)
Pluto Section 2 MPI 8- 128 x (128/1)

Gadget Section 3 MPI + OpenMP 16 - 64 x (32/4)

iPic3D Section 4 MPI 8- 64 x (128/1)

RAMSES | Section 5 MPI 16 - 128 x (128/1)

BHAC Section 6 MPI 2-16 x (128/1)

FIL Section 7 MPI + OpenMP 8- 64 x (8/16)

Changa Section 8 Charm++ 8 - 64 x (8/16)

Table 1: The summary table of the strong scalability tests used for performance evaluation.

All the performance data for this deliverable were collected on the Karolina cluster [3] CPU partition in
IT41, i.e., using compute nodes equipped with 2x AMD EPYC 7H12 (64-core, 2.6 GHz nominal frequency)
processors and 256 GB DDR4 3200 MT/s memory that are interconnected through the 100 Gb/s InfiniBand
HDR100 network. The total theoretical peak performance of the partition (Rpeak) is 3.83PFLOP/s. The
network topology is the non-blocking Fat Tree, which consists of 60 x 40-ports HDR, switches (40 Leaf HDR
switches and 20 Spine HDR switches).

There are several key points that this deliverable achieved:

1. we have used unified and standardized metrics to quantify the scalability properties of the codes and setup
the baseline for further improvements;

2. the performance evaluation was done at scale; some codes were analyzed on up to 16,384 CPU cores (128
nodes of the Karolina cluster), allowing us to see bottlenecks that are not necessarily present at lower
scales;

3. we have worked very closely with code owners to identify regions of interest and focused the work of the
analysis of these particular regions;

4. for every annotated region, and when possible, we have evaluated the POP metrics and highlighted the
potential reasons behind the observed limited scalability and parallel efficiency in general;

Page 1 of 133

5. we have identified possible optimization actions for every annotated region.

We summarize the observations and recommendations in Table 2 in a compact way. At the same time, the
table gives a feeling about the very large amount of work that has been done to prepare the final document.

Issues detected from POP metrics Target
Code Section load comm. computation Region Recommended for GPU
name balance efficiency scalability type optimization offload
Pluto 2
2.3 Region 1 bq N/A good compute LB, INR yes
2.4 Region 3 X N/A good compute LB, INR yes
2.5 Region 6 X N/A good compute LB, INR yes
2.6 Region 9 x N/A good compute LB, INR yes
2.7 Region 10 X transfer eff. X comm. INA /comm. no
Gadget 3
3.3 Region 0 X x good compute/comm. | LB, INA/comm. yes
3.4 Region 1 X X good comm. LB, INA/comm. no
3.5 Region 2 X X good comm. LB, INA/comm. no
3.6 Region 3 X good good compute INR yes
3.7 Region 4 good X good comm. INR yes
3.8 Region 5 good x good compute INA/comm. yes
3.9 Region 6 X good good compute INR yes
iPic3D 4
4.3 Region 1 X x good compute/comm. INA /comm no
4.4 Region 2 good X x compute/comm. INA/comm no
4.5 Region 3 X X good compute/comm. INA/comm no
4.6 Region 4 x x good compute/comm. INA/comm no
RAMSES | 5
5.3 Region 1 X good good compute INR yes
5.4 Region 2 X good good comm. INA /comm no
5.5 Region 3 X good x comm. INA/comm no
BHAC 6
6.3 Region 1 X X x compute INR/comm no
6.4 Region 2 X good good compute LB yes
FIL 7
7.4 Region 0 X x x compute/comm. | LB, INA/comm no
7.5 Region 1 x N/A x compute INR yes
7.6 Region 2 X N/A X compute INR yes
Changa 8
8.4 Region 2 X N/A good compute LB, INR yes
8.5 Region 3 x N/A good compute/comm LB, INA/comm no
8.6 Region 4 X N/A good compute LB no
8.7 Region 5 X N/A good compute LB no

Table 2: A summary table of POP analysis of the selected regions of all codes including the region type and
recommendations for the future optimization (time and energy) and co-design tasks in WP2. (Abbreviations:
comm. - communication, LB - load balance, INA/comm - IntrA-Node/communication optimizations, INR -
InteR-Node optimizations including single-core optimization like vectorization

Generally speaking, we can divide the regions into two categories: compute regions or communication-heavy
regions. The first ones are, in general, good candidates for optimization for new processing architectures with
an ever-growing number of processing cores with more powerful vector units or porting to GPU accelerators.
The goal here is to achieve good ratio with respect to the theoretical peak performance for compute-bound parts
of the codes, and optimal utilization of memory bandwidth for the memory-bound section of the codes. We
should also investigate the new memory technologies like High-Bandwidth Memory (HBM) on general-purpose
processors. The second group is the essential one if applications are supposed to scale to thousands of nodes on
the current pre-exascale or upcoming exascale systems. All this effort will focus on maximizing the utilization
of the current and future EuroHPC systems and their respective processing and accelerator architectures. We
are confident that the results achieved during this first stage of the proposal will serve as a solid starting point
for the next set of efforts and activities planned for the following months.

This document is Public (PU)

Page 2 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE

PROFILING AND BENCHMARKING

Contents
1 Introduction 9
1.1 Performance analysis methodology 9
1.2 Performance analysis tools L 12
1.3 Charm++ performance analysis specifics o 13
1.4 Hardware platform used for performance assessments oL 13
1.5 Performance assessments procedureo 14
1.6 Performance assessments reports structure 14
2 PLUTO 15
2.1 Use-case description L e 15
2.2 High-level code structure L L 16
2.3 Single time step structure - Region 1 Lo 19
2.4 Right Hand Side - Region 3 e 21
2.5 Riemann Solver - Region 6. L 23
2.6 CT_Update- Region 9 e 25
2.7 Boundary - Region 10 L 27
2.8 Conclusion 29
3 OpenGadget 30
3.1 Use-case description L e 30
3.2 High-level code structure L 34
3.3 Timestep - Region 0 o . e 36
3.4 Region 1 - Domain decomposition: intensity decision 39
3.5 Region 2 - Domain decomposition: intensity execute L. 41
3.6 Region 3 - Compute gravitational accelerations L L. 44
3.7 Region 4 - Compute densities L L 46
3.8 Region 5 - Hydrodynamical forces 49
3.9 Region 6 - Extra-physics L o1
3.10 Conclusions o o e e e e e 53
4 iPic3D 54
4.1 Use-case description L L e e 54
4.2 High-level code structure L L 57
4.3 Calculate the Fields - Region 1 o 60
4.4 Particle Mover - Region 2 63
4.5 Calculate B field - Region 3 L 65
4.6 Gather Moments - Region 4 e 67
4.7 Conclusions e e e e 69
5 RAMSES 70
5.1 Use-case description e e e 70
5.2 High-level code structure oL 73
5.3 Godunov solver - Region 1. L 75
5.4 Update from other MPI processes - Region 2 77
5.5 Update boundaries - Region 3 Lo 79
5.6 Conclusions L 81
6 BHAC 82
6.1 Use-case description e e e 82
6.2 High-level code structure e 84
6.3 Single time step - Region 1o L e 86
6.4 advance() routine - Region 2, 7th Timestep 88
6.5 Conclusions e e 90

Page 3 of 133

CONTENTS

7 FIL 91
7.1 Use-case description L e 92
7.2 High-level code structure oL e e 97
7.3 Single time step structure L L 100
7.4 ScheduleTraverse - Region O e 101
7.5 Driver evaluate MHD RHS - Region 1 106
7.6 Conservative to primitive solver - Region 2 o 110
7.7 Conclusions o 114

8 ChaNGa 115
8.1 Use-case description e e 116
8.2 High-level code structure L e 118
8.3 Single time step structure oL e 121
8.4 Gravity (local tree-traversal) - Region 2 123
8.5 Gravity (remote tree-traversal) - Reglon 3 L Lo 125
8.6 Hydrodynamics (start of step) - Region 4 126
8.7 Hydrodynamics (rest of step) - Region 5o 127
8.8 Conclusions e e e 129

9 Conclusions 130

This document is Public (PU)
Page 4 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

List of Figures

Q0 3 O U= W N+~

== = = = = = O
DU W~ O

17

18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

POP metrics hierarchy L 10
POP multiplicative hybrid metrics hierarchy o 0oL 11
Diagram of the Reconstruct-solve-average (RSA) strategy o o o v v v v v v it i 15
Traces for all regions in PLUTO from Paraver showing the high-level structure of the code. . . . 17
Simplified high-level code structure of PLUTO. 18
Zoomed traces for Region 1 of the PLUTO from Paraver showing the structure of the region. . . 19
Strong scaling and POP efficiency metrics for Region 1 of PLUTO. 20
Zoomed traces for Region 3 of the PLUTO from Paraver showing the structure of the region. . . 21
Strong scaling and POP efficiency metrics for Region 3 of PLUTO. 22
Zoomed traces for Region 6 of the PLUTO from Paraver showing the structure of the region. . . 23
Strong scaling and POP efficiency metrics for Region 6 of PLUTO. 24
Zoomed traces for Region 9 of the PLUTO from Paraver showing the structure of the region. . . 25
Strong scaling and POP efficiency metrics for Region 9 of PLUTO. 26
Zoomed traces for Region 10 of the PLUTO from Paraver showing the structure of the region. . 27
Strong scaling and POP efficiency metrics for Region 10 of PLUTO. 28

Projection of gas (left column) and stellar (right column) distribution at z ~ 0 (i.e. at the present
time, after ~ 13 billion years of evolution) in the 30 Mpc boxes. Each row shows the simulation
of the same box resolved with a different number N,, of particles: 64, 128% and 256 in the top,
medium and bottom rows respectively. As the level of details increases from top to bottom, i.e.
with increasing N,, the resolution increases as well. 31
Projection of the gas (left column) and stellar (right column) distribution at z ~ 0 (i.e. at the
present time, after ~ 13 billion years of evolution) in the 643,30 Mpc and 2563, 120 Mpc boxes
(top row and bottom row respectively), where lighter colour indicate a stronger matter density.
While the box size remains constant the number of particles IV, increases from top to bottom,

by which the level of detail increases simultaneously. 0oL 32
Simplified high-level code structure of OpenGadget. 34
Traces for all regions in Gadget from Paraver showing the high-level structure of the code. 35
Zoomed traces for Region 0 of the Gadget from Paraver showing the structure of the region. For

OpenMP timeline the different colours denote different OpenMP parallel regions or functions. . . 36
Strong scaling and POP efficiency metrics for Region 0 of Gadget. 37
Zoomed traces for Region 1 of the Gadget from Paraver showing the structure of the region. . . . 39
Strong scaling and POP efficiency metrics for Region 1 of Gadget. 40
Zoomed traces for Region 2 of the Gadget from Paraver showing the structure of the region. . . . 42
Strong scaling and POP efficiency metrics for Region 2 of Gadget. 43
Zoomed traces for Region 3 of the Gadget from Paraver showing the structure of the region. . . . 44
Strong scaling and POP efficiency metrics for Region 3 of Gadget. 45
Zoomed traces for Region 4 of the Gadget from Paraver showing the structure of the region. . . . 46
Strong scaling and POP efficiency metrics for Region 4 of Gadget. 47
Zoomed traces for Region 5 of the Gadget from Paraver showing the structure of the region. . . . 49
Strong scaling and POP efficiency metrics for Region 5 of Gadget. 50
Zoomed traces for Region 6 of the Gadget from Paraver showing the structure of the region. . . . 51
Strong scaling and POP efficiency metrics for Region 6 of Gadget. 52
The flowchart of PIC method. 54
Various phenomena and aspects of this simulation, highlighting the potential areas of study. . . . 55
The visualization presents electron flow lines traversing through a primary magnetic reconnection

site and interacting with adjacent reconnection regions. 55
The configuration of the simulation showing the setup of the use-case for iPic3D. 56
Traces for all regions in iPic3D from Paraver showing the high-level structure of the code. 58
Zoomed traces for Region 1 of the iPic3D from Paraver showing the structure of the region. . . . 61
Strong scaling and POP efficiency metrics for Region 1 of iPic3D. 62
Zoomed traces for Region 2 of the iPic3D from Paraver showing the structure of the region. . . . 63
Strong scaling and POP efficiency metrics for Region 2 of iPic3D. 64
Zoomed traces for Region 3 of the iPic3D from Paraver showing the structure of the region. . . . 65
Strong scaling and POP efficiency metrics for Region 3 of iPie3D.. 66

Page 5 of 133

LIST OF FIGURES

45
46
47

48
49
20
51
52
53
o4
%)
56

o7
a8

99
60
61

62

63
64
65

66

67
68

69

70

71
72

73
74

(0]
76
7
78
79
80
81
82
83

Page 6 of 133

Zoomed traces for Region 4 of the iPic3D from Paraver showing the structure of the region. . . .
Strong scaling and POP efficiency metrics for Region 4 of iPic3D.
2D cut (plane z = 0) of the gas density at two different times for the Sedov blast test. The blast
wave expands from the computational box corners with time. Note that for this visualisation, a
resolution of only 256% has been used. Units are arbitrary.
Traces for all regions in RAMSES from Paraver showing the high-level structure of the code.
Zoomed traces for Region 1 of the RAMSES from Paraver showing the structure of the region. .
Strong scaling and POP efficiency metrics for Region 1 of RAMSES.
Zoomed traces for Region 2 of the RAMSES from Paraver showing the structure of the region. .
Strong scaling and POP efficiency metrics for Region 2 of RAMSES.
Zoomed traces for Region 3 of the RAMSES from Paraver showing the structure of the region. .
Strong scaling and POP efficiency metrics for Region 3 of RAMSES.
Traces for all regions in BHAC from Paraver showing the high-level structure of the code.
Zoomed traces for 7th timestep of Region 1 of the BHAC from Paraver showing the structure of
the reglon. L e e
Strong scaling and POP efficiency metrics for Region 1 of BHAC.
Zoomed traces for 7th timestep of Region 2 of the BHAC from Paraver showing the structure of
the region. L L e e
Strong scaling and POP efficiency metrics for Region 2 of BHAC.
Traces for all regions in FIL from Paraver showing the high-level structure of the code.
Zoomed traces for Region 0 - level 0 region of the FIL from Paraver showing the structure of the
TEGIOM. .« v v v v e e e e e e e e e
Zoomed traces for Region 0 - level 1 region of the FIL from Paraver showing the structure of the
TEZIOM. . . v i o o e e e e e e e e e
Strong scaling and POP efficiency metrics for Region 0 - level O of FIL.
Strong scaling and POP efficiency metrics for Region 0 - level 1 of FIL.
Zoomed traces for selected threads of Region 1 - level 0 of the FIL from Paraver showing OpenMP
structure of the region. L e
Zoomed traces for selected threads of Region 1 - level 1 of the FIL from Paraver showing OpenMP
structure of the region. L
Strong scaling and POP efficiency metrics for Region 1 - level O of FIL.
Strong scaling and POP efficiency metrics for Region 1 - level 1 of FIL. For purely computational
kernel (no MPI communication), Parallel efficiency metrics are identical to OpenMP efficiency,
therefore, hybrid metrics are omitted.
Zoomed traces for selected threads of Region 2 - level 0 of the FIL from Paraver showing OpenMP
structure of the region. L
Zoomed traces for selected threads of Region 2 - level 1 of the FIL from Paraver showing OpenMP
structure of the region. L
Strong scaling and POP efficiency metrics for Region 2 - level 0 of FIL.
Strong scaling and POP efficiency metrics for Region 2 - level 1 of FIL. For purely computational
kernel (no MPI communication), Parallel efficiency metrics are identical to OpenMP efficiency,
therefore, hybrid metrics are omitted. L
System’s View of a Charm-+-+ Application
a) Tree structure, here we can see nodes within local tree piece (yellow and blue) and nodes
within remote tree pieces(red) b) Spatial representation of the tree build(the blue nodes have
been represented as their remote children nodes). Darker color indicates a further away node
from the local nodes.
Traces for all regions in ChaNGa from Projections showing the high-level structure of the code.

Zoomed traces for Region 1 of the ChaNGa from Projections showing the structure of the region.

Strong scaling and POP efficiency metrics for Region 1 of ChaNGa.

Zoomed traces for Region 2 of the ChaNGa from Projections showing the structure of the region.

Strong scaling for Region 2 of ChaNGa.

Zoomed traces for Region 3 of the ChaNGa from Projections showing the structure of the region.

Strong scaling for Region 3 of ChaNGa. L

Zoomed traces for Region 4 of the ChaNGa from Projections showing the structure of the region.

Strong scaling for Region 4 of ChaNGa. L

67
68

72
74
(6]
76
7
78
79
80
85

. 120

121
122
123
123
125
125
126

This document is Public (PU)

and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

84
85

Zoomed traces for Region 5 of the ChaNGa from Projections showing the structure of the region. 127
Strong scaling for Region 5 of ChaNGa. 128

List of Tables

1
2

= O 00 O U= W

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

33
34
35
36
37

The summary table of the strong scalability tests used for performance evaluation. 1
A summary table of POP analysis of the selected regions of all codes including the region
type and recommendations for the future optimization (time and energy) and co-design tasks

in WP2. (Abbreviations: comm. - communication, LB - load balance, INA/comm - IntrA-

Node/communication optimizations, INR - InteR-Node optimizations including single-core opti-

mization like vectorization L Lo 2
Summary of the HW platform used for performance evaluation. 13
The summary table of the strong scalability tests used for performance evaluation. 14
Overview of the key performance metrics of the Region 1 of PLUTO. 19
Overview of the key performance metrics of the Region 3 of PLUTO. 21
Overview of the key performance metrics of the Region 6 of PLUTO. 23
Overview of the key performance metrics of the Region 9 of PLUTO. 25
Overview of the key performance metrics of the Region 10 of PLUTO. 27
The set of cosmological boxes generated for the profiling activity along the project. The boxes

are referred to as BOX_N,,_SIZE where the ”size” refers to the side length of the box. 30
Overview of the key performance metrics of Region 1 of Gadget. 38
Overview of the key performance metrics of Region 1 of Gadget. 39
Overview of the key performance metrics of Region 2 of Gadget. 42
Overview of the key performance metrics of Region 3 of Gadget. 44
Overview of the key performance metrics of Region 4 of Gadget. 46
Overview of the key performance metrics of Region 5 of Gadget. 49
Overview of the key performance metrics of Region 6 of Gadget. ol
Overview of the key performance metrics of Region 1 of iPic3D. 61
Overview of the key performance metrics of Region 2 of iPic3D. 64
Overview of the key performance metrics of Region 3 of iPic3D. 65
Overview of the key performance metrics of Region 4 of iPic3D. 67
Overview of the key performance metrics of Region 1 of RAMSES. 75
Overview of the key performance metrics of Region 2 of RAMSES. 77
Overview of the key performance metrics of Region 3 of RAMSES. 79
Overview of the key performance metrics of Region 1 of BHAC. 86
Overview of the key performance metrics of Region 2 of BHAC. 88
Overview of the key performance metrics of Region 0 - level 0 of FIL. 102
Overview of the key performance metrics of Region 0 - level 1 of FIL. 103
Overview of the key performance metrics of Region 1 -level 0 of FIL. 107

Overview of the key performance metrics of Region 1 - level 1 of FIL. For purely computational
kernel (no MPI communication), Parallel efficiency metrics are identical to OpenMP efficiency,
therefore, hybrid metrics are omitted. oL L 108
Overview of the key performance metrics of Region 2 - level 0 of FIL. 111
Overview of the key performance metrics of Region 2 - level 1 of FIL. For purely computational
kernel (no MPI communication), Parallel efficiency metrics are identical to OpenMP efficiency,

therefore, hybrid metrics are omitted 112
Overview of the key performance metrics of Region 1 of ChaNGa. 121
Overview of the key performance metrics of Region 2 of ChaNGa. 123
Overview of the key performance metrics of Region 3 of ChaNGa. 125
Overview of the key performance metrics of Region 4 of ChaNGa. 126
Overview of the key performance metrics of Region 5 of ChaNGa. 127

Page 7 of 133

LIST OF TABLES

38 A summary table of POP analysis of the selected regions of all codes including the region
type and recommendations for the future optimization (time and energy) and co-design tasks

in WP2. (Abbreviations: comm. - communication, LB - load balance, INA/comm - IntrA-
Node/communication optimizations, INR - InteR-Node optimizations including single-core opti-
mization like vectorizationo o 130

This document is Public (PU)
Page 8 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

1 Introduction

The main goal of this deliverable is to provide performance assessments of the SPACE CoE codes and identify
the regions of the codes that can be potentially extracted as mini-applications or kernels and therefore further
optimized in the following activities of the WP1 and WP2.

To evaluate the scalability and efficiency of particular performance aspects in the SPACE CoE parallel
codes, we use a performance model and analysis methodology developed within the POP and POP2 Centers of
Excellence [1].

We consider this as a crucial point for two main reasons. The first reason is that the POP methodology [2]
can be considered a standardized approach to evaluate the performance of parallel codes and, as such, it allows
one to compare the parallel performance metrics between different applications coming from different scientific
domains and also using different programming models. For example, the POP methodology can provide the
same efficiency metrics for MPI, MPI+OpenMP, or MPI4+CUDA acceleration programming models.

The second reason is that if within this project we do not have enough resources or expertise to provide an
extremely detailed performance evaluation, we can and will collaborate with POP3 CoE and their experts on
such cases. Thanks to the initial work in WP2 reported in this deliverable, we now have a working annotation
of the codes and functional tracing up to 16,384 CPU cores (either MPI only or MPI4+OpenMP) using POP
tools. This significantly improves the interaction with POP3 CoE, as their experts do not have to trace the
codes by themselves, but only analyze the traces provided by us.

1.1 Performance analysis methodology

Attempting to optimize the performance of a parallel code can be a daunting task and often is difficult to know
where to start. For example, we might ask if the way computational work is divided is a problem. Or perhaps
the chosen communication scheme is inefficient? Or does something else impact performance? To help address
this issue, POP has defined a methodology for the analysis of parallel codes to provide a quantitative way of
measuring the relative impact of the different factors inherent in parallelization. This section introduces these
metrics, explains their meaning, and provides information on the thinking behind them.

A feature of the methodology is that it uses a hierarchy of metrics, each metric reflecting a common cause
of inefficiency in parallel programs. These metrics then allow comparison of parallel performance (e.g., over a
range of thread/process counts, across different machines, or at different stages of optimization and tuning) to
identify which characteristics of the code contribute to inefficiency.

The first step to calculating these metrics is to use a suitable tool (e.g., Extrae) to generate trace data whilst
the code is executed. The traces contain information about the state of the code at a particular time (e.g., it
is in a communication routine or doing helpful computation) and also contain values from processor hardware
counters (e.g., number of instructions executed, number of cycles).

The metrics are then calculated as efficiencies between 0 and 1, with higher numbers being better. In general,
we consider efficiencies above 0.8 as acceptable, whereas lower values indicate performance issues that need to
be explored in detail.

The approach outlined here is applicable to various parallelism paradigms. However, for this deliverable, we
distinguish two models of metrics: 1) for codes based on distributed-memory computing (i.e., message passing
communication model) and 2) for hybrid codes combining distributed-memory and shared-memory computing
(e.g., MPI and threading with OpenMP). In the following subsections, we describe both models.

1.1.1 Metrics for codes with the distributed-memory computational model

At the top of the hierarchy, see Figure 1, is Global Efficiency (GE), which we use to judge the overall quality
of parallelization. Typically, inefficiencies in parallel code have two main sources:

e Overheads imposed by the parallel nature of a code
e Poor scaling of computation with increasing numbers of processes

and to reflect this, we define two submetrics to measure these two inefficiencies. These are Parallel Effi-
ciency and Computation Efficiency, and our top-level GE metric is the product of these two sub-metrics:

GE = Parallel Efficiency * Computation Efficiency (1)

Page 9 of 133

1.1 Performance analysis methodology

Global
Efficiency
1
I |
Computation Parallel
Efficiency Efficiency
)
|
Load Communication
Balance Efficiency
A
I
Serialisation Transfer
Efficiency Efficiency

Figure 1: POP metrics hierarchy

Parallel Efficiency (PE) reveals the inefficiency in splitting computation over processes and then com-
municating data between processes. As with GE, PE is a compound metric whose components reflect two
important factors in achieving good parallel performance in code:

e Ensuring even distribution of computational work across processes
e Minimising time communicating data between processes

These are measured with Load Balance Efficiency and Communication Efficiency, and PE is defined
as the product of these two sub-metrics:

PE = Load Balance * Communication Efficiency (2)

Load Balance (LB) is computed as the ratio between average useful computation time (across all processes)
and maximum useful computation time (also across all processes):

LB = average computation time / maximum computation time (3)

Communication Efficiency (CommE) is the maximum across all processes of the ratio between useful
computation time and total runtime:

CommE = maximum computation time / total runtime (4)

CommE identifies when code is inefficient because it spends a large amount of time communicating rather
than performing useful computations. CommE is composed of two additional metrics that reflect two causes of
excessive time within communication:

e Processes waiting at communication points for other processes to arrive (i.e. serialization)
e Processes transferring large amounts of data relative to the network capacity

These are measured using Serialization Efficiency and Transfer Efficiency. In obtaining these two submetrics,
we first calculate (using the Dimemas simulator) how the code would behave if run on an idealized network
where transmission of data takes zero time.

Serialisation Efficiency (SerE) describes any loss of efficiency due to dependencies between processes
causing alternating processes to wait:

SerE = maximum computation time on ideal network / total runtime on ideal network (5)

This document is Public (PU)
Page 10 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

Transfer Efficiency (TE) measures inefficiencies due to time in data transfer:
TE = total runtime on ideal network / total runtime on real network (6)
These two sub-metrics combine to give Communication Efficiency:
CommE = Serialisation Efficiency * Transfer Efficiency (7

The final metric in the hierarchy is Computation Efficiency (CompkE), which is a ratio of total time in
useful computation summed over all processes. For strong scaling (i.e. problem size is constant) it is the ratio
of total time in useful computation for a reference case (e.g. on 1 process or 1 compute node) to the total time
as the number of processes (or nodes) is increased. For CompE to have a value of 1 this time must remain
constant regardless of the number of processes.

Insight into possible causes of poor computation scaling can be investigated using metrics devised from
processor hardware counter data. Two causes of poor computational scaling are:

e Dividing work over additional processes increases the total computation required
e Using additional processes leads to contention for shared resources

and we investigate these using Instruction Scaling and Instructions Per Cycle (IPC) Scaling.

Instruction Scaling is the ratio of the total number of useful instructions for a reference case (e.g., 1
processor) compared to values when increasing the number of processes. A decrease in Instruction Efficiency
corresponds to an increase in the total number of instructions required to solve a computational problem.

IPC Scaling compares IPC to the reference, where lower values indicate that the rate of computation has
slowed. Typical causes for this include decreasing cache hit rate and exhaustion of memory bandwidth. These
can leave processes stalled and waiting for data.

1.1.2 Metrics for codes with the hybrid computational model

Hybrid Parallel
Efficiency
Hybrid Communication Hybrid Load MPI Parallel OpenMP Parallel
Efficiency Balance efficiency efficiency
MPI Comm. MPI Load OpenMP Comm. OpenMP Load
efficiency Balance efficiency Balance
Serialization Transfer
Efficiency Efficiency

Figure 2: POP multiplicative hybrid metrics hierarchy

Similarly to the previous model, we start describing the hybrid model from the top of Figure 2. We use a
multiplicative hybrid model in which the higher-level metrics can be computed as a product of the lower-level
metrics. Hybrid Parallel Efficiency can be computed from Hybrid Communication Efficiency and Hybrid
Load Balance Efficiency, or MPI Parallel Efficiency and OpenMP Parallel Efficiency. The resulting number
reflects the percentage of time spent outside of both parallel runtimes (i.e., MPI and OpenMP).

Page 11 of 133

1.2 Performance analysis tools

Hybrid Communication Efficiency (HCE) shows how much loss is caused by communication. It can
be computed directly:

HCE = maximum computation time on all processes and threads / total runtime (8)

HCE can be decomposed into MPI Communication Efficiency and OpenMP Communication Efficiency. MPI
Communication Efficiency (MCE) describes a loss caused by MPI communication. It is computed by a
simple formula:

MCE = maximum time outside of MPI calls / total runtime 9)

Similarly to Communication Efficiency described in the previous section, MCE can be decomposed and obtained
from MPI Transfer Efficiency and MPI Serialization Efficiency. They are equivalent to the corresponding
metrics from the previous section, i.e., Transfer Efficiency and Serialization efficiency.

OpenMP Communication Efficiency (OCE) captures an overhead caused by OpenMP communication
constructs such as thread synchronization and scheduling. The formula for OCE is:

OCE = maximum computation time on all processes and threads / maximum time outside of MPI (10)

Hybrid Load Balance Efficiency (HLBE) shows how well the distribution of work between processes
and threads is done. It is defined as:

HLBE = average computation time / maximum computation time (11)

HLBE can be divided into MPI Load Balance Efficiency and OpenMP Load Balance Efficiency. MPI Load
Balance Efficiency (MLBE) is defined as same as Load Balance in the previous section. OpenMP Load
Balance Efficiency (OLBE) reflects how evenly work is distributed between threads. The metric can be
computed from HLBE and MLBE.

MPI Parallel Efficiency describes the efficiency of parallelization from the MPI point of view. It is the
result of a product of MCE and MLBE. Analogously, OpenMP Parallel Efficiency focuses on the OpenMP
parallelization and it is computed from OCE and OLBE.

Computation Efficiency, Instruction Scaling, and IPC Scaling defined in the previous section are valid for
the hybrid model, too.

1.2 Performance analysis tools

In the SPACE CoE project, we will analyze application behavior using various open-source as well as commercial
tools ! to identify the performance bottlenecks of these applications. The performance analysis methodology of
the POP-COE project will be used [2].

1. Extrae

Extrae [4] provides performance data collection mostly using the preload mechanism of the linker which
enables omitting compilation hooks and executing the unmodified production binary. It intercepts the
main parallel runtime environments (MPI, OpenMP, OmpSs, Pthreads, CUDA, OpenCL, SHMEM) and
supports all major programming languages (C, C++, Fortran, Python, JAVA). Extrae also provides Basic
analysis framework, that automatically generates POP metrics from the Extrae trace file, otherwise it must
be evaluated manually.

2. Paraver

Paraver [5] is a trace-based performance analyzer with great flexibility to explore and extract information
from Extrae output files. Paraver provides two main visualizations: timelines that graphically display
the evolution of the application over time, and tables (profiles and histograms) that provide statistical
information. These two complementary views allow easy identification of computational inefficiencies such
as load balancing issues, serialisations that limit scalability, cache and memory impact on the performance,
and regions with generally low efficiency.

Furthermore, Paraver contains analytic modules, for example the clustering tool for semi-automatic de-
tection of the application structure, and the tracking tool to detect where to improve code to increase
scalability.

IThe listed commercial tools are available at IT4Innovations or FZJ cluster for the users. No license is required to buy under
the SPACE CoE project

This document is Public (PU)
Page 12 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

3. PyPOP

PyPOP [6] is a python package for calculating POP metrics from application profiles, primarily designed
for literate programming using Jupyter notebooks. PyPOP currently consumes Extrae output trace files
only.

4. Region extraction tool for automated analysis of regions

It is a tool that can automatically extract subtraces for selected regions in the applications using Extrae-
based annotations and calculate the POP metrics for a given region. This functionality is achieved by a
combination of different tools designed for the post-processing of Extrae traces and PyPOP. The tool is
currently under continuous development and has not been publicly released yet.

5. Projections

Projections [7] is a performance analysis/visualization framework that helps you understand and inves-
tigate performance-related problems in Charm++ applications. It is a framework with an event-tracing
component, which allows for control over the amount of information generated.

1.3 Charm++ performance analysis specifics

Charm++ is a parallel object-oriented programming paradigm that provides a high-level abstraction of a parallel
program. Programs written in Charm++ are decomposed into a number of cooperating message-driven objects.
Method invocation on an object causes the Charm++ runtime system to send a message to the object, which
may be local or remote in a parallel computation. This message triggers the execution of code within the object
asynchronously.

This asynchronous nature, together with other aspects, requires a special approach when it comes to per-
formance analysis. The Extrae and Paraver tools do not have the native support for the Charm—++ codes.
There is possibility to use these tools, however, the amount of information is rather limited. For this reason,
we decided to use native performance analysis tool called Projections. Due to the limitations of this tool, we
were not able to provide all the common metrics for the Charm++ codes. In particular, we were not able to
capture information regarding instruction count, IPC and frequency and as such metrics derived from these
values are not included. Projection tool also lack the capability to simulate ideal network, a feature essential
for serialization efficiency and transfer efficiency metrics, so they were omitted as well. We use an alternative
definition of communication efficiency motioned in Section 1.1. Other POP metrics were computed according
to their respective definitions.

In assessments of performance of the respective regions of Charm++ codes, there was no way to include
information regarding communication and idle times. The Projections tool provides us with aggregated runtime
of respective regions only. Therefore, the assessment of regions represent scaling of computation. In other words,
the assessment neglects the communication and other overheads.

1.4 Hardware platform used for performance assessments

All the performance data for this deliverable were collected on the Karolina cluster [3] CPU partition in IT4L, i.e.,
using compute nodes equipped with 2x AMD EPYC 7H12 (64-core, 2.6 GHz nominal frequency) processors and
256 GB DDR4 3200 MT/s memory that are interconnected through the 100 Gb/s InfiniBand HDR100 network.
The total theoretical peak performance of the partition (Rpeak) is 3.83PFLOP/s. The network topology is the
non-blocking Fat Tree, which consists of 60 x 40-ports HDR switches (40 Leaf HDR switches and 20 Spine HDR
switches).

Partition number of node CPU memory Network
CPU partition 720 2xAMD Zen2 EPYC 7TH12 256 GB 1x 100Gbit/s
2.6 GHz nominal frequency | 2 GB/core | (Infiniband HDR100)
3.3 GHz boost frequency
64 cores
with AVX2 support

Table 3: Summary of the HW platform used for performance evaluation.

Page 13 of 133

1.5 Performance assessments procedure

1.5 Performance assessments procedure

In this deliverable, we focus on the performance analysis of the CPU versions of the code to set a baseline for
further optimizations. All experiments were executed on the CPU partition of the Karolina cluster. For tracing
and performance analysis, we used Extrae 4.0.4 and Paraver 4.10.6 tools, both developed at the Barcelona
Supercomputing Center. Since these tools do not have support for Charm-++-, for ChaNGa performance evalu-
ation, we have used a native performance analysis tool for Charm++ Projections 11.0. The tool details are in
the above section.

The benchmarking procedure to get final traces with Extra-e was as follows. In the single Slurm jobscript
one should execute the following sequence:

1. 1 warmup run with non-instrumented version of the code,

2. 3 runs of non-instrumented version of the code to verify that instrumentation is not a cause for the
observed overheads (record the execution time of the application using build in timers)

3. 3 runs of instrumented version of the code to obtain the traces - we will use the best trace (trace with the
shortest execution time).

The summary of all experiments performed for this deliverable is shown in the next table. The important
fact is that we have several strong scalability points to evaluate to see the trends in the POP metrics as one
increases the level of parallelism.

Code link Programming model used for D2.1 | Strong scaling [nodes] x (procs/threads)
Pluto Section 2 MPI 8 - 128 x (128/1)

Gadget Section 3 MPI + OpenMP 16 - 64 x (32/4)

iPic3D Section 4 MPI 8- 64 x (128/1)

RAMSES | Section 5 MPT 16 - 128 x (128/1)

BHAC Section 6 MPI 2-16 x (128/1)

FIL Section 7 MPI + OpenMP 8 - 64 x (8/16)

Changa Section 8 Charm++ 8 - 64 x (8/16)

Table 4: The summary table of the strong scalability tests used for performance evaluation.

In Section 9 we present a Table 38 summarizing our findings on all codes at the coarse level. Essentially, it
is a summary of the next more than 100 pages, and it shows all the evaluated regions and recommendations.

1.6 Performance assessments reports structure

Starting from the next section, we dedicate one section of this deliverable to one code. Each section is organized
as follows. Subsection 1 provides a short description of the code to introduce the problems that can be solved
with a given code. Subsection 2 contains a use case description that has been used for performance evaluation.
Subsection 3 describes a high-level structure of the code, including the regions of interest, and shows how the
regions are annotated. It also provides a visual representation of all regions within the application runtime.

Subsection 4 focuses on a single iteration of the code, which mainly represents the key workload without
the pre- and post-processing. For this region, we also provide the scalability, as well as all key POP metrics.

The following subsections focus on regions of interest that are analyzed one per subsection. For every
region we provide a region description to inform a reader about the workload, visual representation of the region
and its trace, scalability metrics, and POP performance metrics. Finally, we discuss the observed performance
metrics. The basic analysis of performance metrics provides a baseline for any subsequent analysis performed
after particular optimizations or updates to the application. The strong scaling charts also include three regions
that represent a percentage of the ideal (linear) scaling: Green is 100-80 %, orange means 80-0 %, and red
indicates a speedup less than 1, that is, the slowdown. In general, the performance metrics presented in the
heat map tables indicate the area of inefficiency, but finding the root cause of the particular issue requires a
deeper analysis, which is beyond the scope of this deliverable.

The final subsection provides conclusions for a given application based on performance analyzes.

This document is Public (PU)
Page 14 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2 PLUTO

PLUTO [8] is designed to integrate a general system of conservation laws that we write as

a—U:—V~T(U)+S(U). (12)
ot
Here U denotes a state vector of conservative quantities, T(U) is a rank 2 tensor (the rows of which are the
fluxes of each component) and S(U) defines the source terms. Additional source terms may implicitly arise
when taking the divergence of T(U) in a curvilinear system of coordinates. An arbitrary number of advection
equations may be added to the original conservation law.

Although the components of U are the primary variables being updated, fluxes are computed more conve-
niently using a different set of physical quantities, which we take as the primitive vector V. Numerical integration
of the conservation law above is achieved through shock-capturing schemes using the Finite-Volume (FV) for-
malism where volume averages evolve in time. Generally speaking, these methods comprise three steps: an
interpolation routine followed by the solution of Riemann problems at zone edges and a final evolution stage.
In PLUTO, this sequence of steps provides the necessary infrastructure of the code; see the schematic diagram
in Figure3: first, volume averages U are more conveniently mapped into primitive quantities V. Left and right
states V. 1 and V_ g are reconstructed inside each zone and a Riemann problem is then solved between them
to obtain the numerical flux function Fy at interfaces. The solution is finally advanced in time.

Convert: States:
R —
Uu—=V V—=V, , V.
Riemann: Update:
- +1_ n_ At _
+L° V+,R F, UT=u AXx (F-E)

Figure 3: Diagram of the Reconstruct-solve-average (RSA) strategy

2.1 Use-case description

The chosen use-case description is the relativistic magnetized blast wave problem in 3D. It consists of a highly
pressurized region inside a sphere embedded in a static uniform medium with lower pressure. The magnetic
field is constant and threads through the whole computational domain. The blast wave problem has been
specifically designed to show the scheme’s ability to handle strong shock waves propagating in highly magnetized
environments. Depending on the strength of the magnetic field, it can become a rather arduous test leading to
negative densities or pressures if the divergence-free condition is not adequately controlled and if the numerical
scheme does not introduce proper dissipation across curved shock fronts.

Below we report the problems parameters: density (rho), internal and external pressures (p (in) and p
(out)), magnetic field (B), the number of dimensions and the reference.

3.e-5 | 1.0 | 3 | [Mig_etal2007], sec 5.7

The corresponding problem header definition file is:

// definitions.hpp

#define PHYSICS RMHD
#define DIMENSIONS 3

#define GEOMETRY CARTESIAN
#define BODY_FORCE NO
#define COOLING NO

Page 15 of 133

2.2 High-level code structure

#define RECONSTRUCTION LINEAR
#define TIME_STEPPING RK3
#define EOS IDEAL
#define ENTROPY_SWITCH NO

#define RADIATION NO

#define DIVB_CONTROL CONSTRAINED_TRANSPORT
#define ASSIGN_VECTOR_POTENTIAL YES
#define LIMITER MINMOD_LIM
#define CT_EMF_AVERAGE UCT_HLL
#define CT_EN_CORRECTION YES
#define GAMMA_EOS (4./3.)

=

Finally, the corresponding relevant part of the run-time initialization file (pluto.ini) is

// pluto.int

CFL 0.25
CFL_max_var 1.1
tstop 4.0
first_dt 1.e-4
Solver hll

.

2.2 High-level code structure

The computational part of the code is defined by the while loop that cycles as long as a final simulation time has
been reached or the maximum number of steps has been reached. The main operation executed in the body of the
while loop is called AdvanceStep(). This operation advances equations in time with a Runge-Kutta (RK) time
integrator of desired order. For simplicity, the code block describing the code structure depicts a Runge-Kutta
integration of order 1. For the 3"d-order Runge-Kutta, as in our selected case, the AdvanceStep() function
consists of 3 similar stages. Then, each Runge-Kutta stage calls once UpdateStage() (which implements a
single RK stage) and once Boundary(). The UpdateStage() function advances the equations in conservative
form during a single stage by calling d->f1luidRiemannSolver () (which computes the conservative fluxes using
a Riemann solver) followed by RightHandSide () (which computes the actual right hand side of the equation)
and also CT_Update () (which computes the solution increment for staggered magnetic fields). These operations
are repeated once for every dimension. The high level structure of the code is shown in Figure5. The visual
representation of individual regions in the scope of the single time step is shown in Figure 4.

This document is Public (PU)
Page 16 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

State as is @ pluto_1024_2.prv #1
THREAD 1.1.1

THREAD 1

THREAD

THREAD

B Running

M Synchronization

W Wait/Waitall

O Group Communication
M Send Receive

Region @ (timestep 5) @ pluto_1024_2.prv #1

THREAD 1.

THREAD 1.1624.1 [0o .

Region 0

Region 1 @ pluto_1024_2.prv #1
THREAD 1.1.1

THREAD 1
THREAD 1
THREAD 1

THREAD 1.1624.1 o

Region 3 @ pluto_1024_2.prv #1
THREAD 1

THREAD
THREAD
THREAD

THREAD

Region 6 @ pluto_1624_2.prv #1
THREAD

THREAD
THREAD
THREAD

THREAD 1.1

Region 9 @ pluto_1024_2.prv #1
THREAD 1.1.1

THREAD 1
THREAD 1
THREAD 1

THREAD 1.1

Region 10 - Focus on first stage of Runge-Kutta)

Figure 4: Traces for all regions in PLUTO from Paraver showing the high-level structure of the code.

Page 17 of 133

2.2 High-level code structure

while (last_step!=1){
REGION_START (0);

AdvanceStep (){ /* RK_STEP ROUTINE
REGION_START (1) ;

REGION_START (10);

Boundary (1. ..}

REGION_STOP (10);
REGION_START (2);
REGION_START (3);
RightHandSide (){...}
REGION_STOP (3);
REGION_START (6);
REGION_STOP (6);
REGION_START (9);
CT_Update(d, Us, dt, grid){...}
REGION_STOP (8);

REGION_STOP(2);
} /+ END UPDATE_STAGE ROUTINE

REGION_STOP(1);
} /# END RK_STEP ROUTINE

REGION_STOP (0);
}

UpdateStage (){ /* UPDATE_STAGE ROUTINE

d->fluidRiemannSolver(d, Dts, grid,

Figure 5: Simplified high-level code structure of PLUTO.

Page 18 of 133

This document is Public (PU)

and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2.3 Single time step structure - Region 1

AdavanceStep() advances equations with Runge-Kutta time integrator of the 3-rd order. Where U™ denotes

U =U" + A",

1
U™ = (U + U + ML),

1

vt = F(U"+2U" +200L7).

a state vector of conservative quantities at the time n and L™ is the right-hand side operator that depends on
the numerical flux functions that follow the solution of Riemann problems at cell interfaces.

We focus on the first stage of the integration, the predictor step (g_intStage=1) to profile only once the inner
routines called in AdvanceStep (). Different stages of the RK scheme are similar when it comes to computational
load.

Region 1 detail @ plute_1024 2.prv #1

THREAD 1.1824.1 188,259 279 us

THREAD 1.1824.1 o
us

M Outside MPI
B MPI_Barrier
B MPI_Sendrecv
W MPI_Testall

Figure 6: Zoomed traces for Region 1 of the PLUTO from Paraver showing the structure of the region.

The performance of the evaluation of the entire iteration region follows.

Number of processes 1024 2048 4096 8192 16384
Elapsed time (sec) 5.663043 | 3.020909 | 1.629731 | 0.901387 | 0.501324
Efficiency 1.0 0.937308 | 0.868708 | 0.785323 | 0.706011
Speedup 1.0 1.874616 | 3.474833 | 6.282588 | 11.296174
Average IPC 1.327813 | 1.340291 | 1.338780 | 1.356088 | 1.345968
Average frequency (GHz) | 1.782482 | 1.782190 | 1.790789 | 1.796826 | 1.806674

Table 5: Overview of the key performance metrics of the Region 1 of PLUTO.

Page 19 of 133

2.3 Single time step structure - Region 1

17.51
15.0+
12.54
o
=]
< 10.01
Q
[}
& 757
5.0+
2.5
0.0+ \
0 4000
1024
1
Global efficiency - 93.15
-- Parallel efficiency - 93.15
- Load balance - 94.89
-- Communication efficiency - 98.17
-- Serialization efficiency - 99.87
-- Transfer efficiency - 98.30
-- Computation scalability - 100.00
- IPC scalability - 100.00
- Instruction scalability - 100.00
- Frequency scalability - 100.00

8000

Total Threads
2048 4096
87.‘34 81;06
88.25 83.22
91.77 86.25
96.16 96.48
99.95 99.90
96.21 96.58
98.97 97.41
100.94 100.83
98.06 96.16
99.98 100.47

12000

8192
73.‘70
771.52
81.94
94.60
99.88
94.71
95.08
102.13
92.36

100.80

16000
16384
' - 100
66.41
72.72
-80
78.25
92.94 -
60 ¥
99.47 g
=
93.43 £
—q0 o
91.33 g
101.37
20
88.89
101.36
0

Figure 7: Strong scaling and POP efficiency metrics for Region 1 of PLUTO.

This region includes the kernel regions 3, 6, 9, and 10, which are used for further detailed evaluations in the
following sections. The timeline of the region together with the communication pattern is shown in Figure 6. As
such it contains several compute kernels without communication and one region where global communication
emerges and therefore synchronizes code between iterations. From the performance evaluations, see Figure 6
and Table 5, The Global Efficiency for 16,384 MPI ranks is approximately 66% where the most prominent
reason is load imbalance, which we recommend investigating in the follow-up work.

Page 20 of 133

This document is Public (PU)

and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2.4 Right Hand Side - Region 3

This is one of the routines at the core of the computation. It is invoked three times (one time per direction) and
as many times as the number of Runge-Kutta stages, so 9 times (one per direction for three RK stages) times
for every step. It consists of two computational loops iterating over the whole active domain. The function
computes the right hand side of the MHD (General Relativistic Magneto-hydrodynamics) equations in different
geometries, taking contributions from one direction at a time. Traces are obtained only of the kernel along
x-direction. The right hand side (R) consists of the following contributions:

At
AV
where A;4/9 are the right (+) and left (—) interface areas, F;1;/o are the interface fluxes, At is the time

step while S is source term including geometrical source terms and gravity.
In order to compute R, this function takes the following steps:

R=———(Ais1/2Fiy172 — Aic1)2Fi_1)2) + At S, (13)

e initialize R with flux differences
e add geometrical source terms
e add gravity.

We focus on the predictor step, g-intStage=1 and x-direction g_dir=IDIR to profile only once the routine.
Computational loads of different directions are similar.

Region 3 detail @ plute_ 1024 2.prv #1
THREAD 1.1.1

°7 183,533,587 us 119,113,882 us

Figure 8: Zoomed traces for Region 3 of the PLUTO from Paraver showing the structure of the region.

Number of processes 1024 2048 4096 8192 16384

Elapsed time (sec) 0.22669 | 0.116135 | 0.068069 | 0.027751 | 0.036582
Efficiency 1.0 0.975976 | 0.832574 | 1.021089 | 0.387298
Speedup 1.0 1.951952 | 3.330297 | 8.168715 | 6.196763
Average IPC 0.689928 | 0.691791 | 0.684749 | 0.851153 | 0.940801
Average frequency (GHz) | 2.072517 | 2.072597 | 2.072089 | 2.072995 | 2.072600

Table 6: Overview of the key performance metrics of the Region 3 of PLUTO.

Page 21 of 133

2.4 Right Hand Side - Region 3

17.51
15.0+
12.54
o
=]
5 10.01
Q
S
n 1.51
5.0+
2.51
0 4000
1024
1
Global efficiency - 92.85
-- Parallel efficiency - 92.85
- Load balance - 92.86
-- Communication efficiency - 99.99
-- Serialization efficiency - 100.00
-- Transfer efficiency - 99.99
-- Computation scalability - 100.00
- IPC scalability - 100.00
- Instruction scalability - 100.00
- Frequency scalability - 100.00

8000 12000
Total Threads

2048 4096 8192

90.‘65 77.I36 95.‘13
92.97 82.43 82.47
92.98 82.46 82.50
99.98 99.97 99.97
100.00 100.00 100.00
99.98 99.97 99.97
97.51 93.84 115.34
100.27 99.25 123.37
97.24 94.57 93.47
100.00 993.98 100.02

16000

- 100

-60

- 40

Percentage(%)

0

Figure 9: Strong scaling and POP efficiency metrics for Region 3 of PLUTO.

The function does not contain data communication between processors (or GPUs). It is therefore selected
for the potential exploitation of advanced vectorization units or accelerators. The loss of scaling observed for
more than 2 800 threads deserves more investigation, but it may be attributed to a load imbalance.

Page 22 of 133

This document is Public (PU)

and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2.5 Riemann Solver - Region 6

The Riemann solver represents the most complex single kernel and, as the RightHandSide (), is called 9 times
per step. Here we solve the Riemann problem for the RMHD equations using the Harte-Lax-van Leer (HLL)
Riemann solver. On input, this function takes left and right primitive sweep vectors sweep->vL and sweep->vR
at zone edge i+1/2. On output, it returns flux and pressure vectors at the same interface i+1/2 (note that the
index i refers to i+1/2). Also during this step, it computes the maximum wave propagation speed (cmax) for
explicit time step computation. We focus on the predictor step, g_intStage=1 and x-direction g_dir=IDIR to
profile only once the routine.

Region & detail @ plute_1024 2.prv #1
THREAD 1.1.1

183,855,133 us

Figure 10: Zoomed traces for Region 6 of the PLUTO from Paraver showing the structure of the region.

Number of processes 1024 2048 4096 8192 16384

Elapsed time (sec) 0.64654 | 0.36685 | 0.196132 | 0.124846 | 0.148533
Efficiency 1.0 0.881205 | 0.824113 | 0.647338 | 0.272052
Speedup 1.0 1.76241 | 3.296453 | 5.1787 4.352837
Average IPC 2.038645 | 2.056873 | 2.033582 | 1.947460 | 2.003751
Average frequency (GHz) | 1.488987 | 1.476381 | 1.498008 | 1.499206 | 1.468662

Table 7: Overview of the key performance metrics of the Region 6 of PLUTO.

Page 23 of 133

2.5 Riemann Solver - Region 6

17.51
15.0+
12.5+
o
=]
< 10.0-
Q
g
n 7.51
5.0
2.5
0 4000 8000 12000 16000
Total Threads
1024 2048 4096 8192 16384
1 I 1 ! - 100
Global efficiency - 7997 7047 6591 | 51.78 m
-- Parallel efficiency - 79.97 72.43 69.44 57.78
- 80
- Load balance - 79.97 72.44 69.45 57.79
-- Communication efficiency - 99.99 ezl)] 99.98 99.98 99.98 =
-60 =
-- Serialization efficiency - 100.00 100.00 | 100.00 100.00 100.00 [
(]
-- Transfer efficiency - 99.99 99.99 99.98 99.98 99.98 :c_;
-40 =
-- Computation scalability - 100.00 97.29 94.92 89.62 85.63 &
-- IPC scalability - 100.00 100.89 99.75 95.53 98.29
20
- Instruction scalability - 100.00 97.25 94.58 93.18 88.32
- Frequency scalability - 100.00 99.15 100.61 100.69 98.63
0

Figure 11: Strong scaling and POP efficiency metrics for Region 6 of PLUTO.

This region is computationally intensive, and it does not contain any communication between MPI processes
(Figs. 10 - 11). Therefore, it can be selected for the potential exploitation of advanced vectorization units on
new ARM based processors or GPU accelerators. The loss of performance visible at 2 800 threads resembles
the same trend already discussed in Region 3 (right hand side computation). This is not surprising as the two
functions are called in sequence and both may reflect the unbalanced workload. More work is needed in order
to address this shortcoming. This will be taken care of in the next month’s activities.

This document is Public (PU)
Page 24 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2.6 CT_Update - Region 9

This routine ensures a divergece-free update of the staggered magnetic field in the constrained transport for-
malism and it is called 3 times per step. It is based on a discrete version of Stoke’s theorem.

The update consists of a single Fuler step:
B, — B, + AtR (14)

where B_s is the main staggered array used by PLUTO, By is the magnetic field to be updated and R is the
right hand side already computed during the unsplit integrator.

We focus on the predictor step, g-intStage=1 to profile only once the routine.

Region 9 detail @ plute_1024_2.prv #1
THREAD 1.1.1 ——

Figure 12: Zoomed traces for Region 9 of the PLUTO from Paraver showing the structure of the region.

Number of processes 1024 2048 4096 8192 16384
Elapsed time (sec) 0.063406 | 0.036422 | 0.018114 | 0.015994 | 0.0037
Efficiency 1.0 0.870436 | 0.875097 | 0.495545 | 1.071047
Speedup 1.0 1.740871 | 3.500386 | 3.964362 | 17.136757
Average IPC 3.836924 | 3.163268 | 4.174214 | 4.103711 | 4.240599
Average frequency (GHz) | 1.867786 | 1.853641 | 1.887301 | 1.867900 | 1.870253

Table 8: Overview of the key performance metrics of the Region 9 of PLUTO.

Page 25 of 133

2.6 CT_Update - Region 9

1 .
15+
Q. 4
3 10
O J
2
(7]] /
1 A
5 - _/
1 ."'
0 -
t T T T T t T T T T t T T T T t T T
0 5000 10000 15000
Total Threads
1024 2048 4096 8192 16384
] [} 1 1 - 100
Global efficiency . 5254 4585 46.16 m 57.12
-- Parallel efficiency - 52.54 56.17 42.20 24.74 52.54
- 80
-- Load balance - 52.54 56.17 42.20 24,75 52.55
-- Communication efficiency - 99.99 99.99 99.99 99.99 99.98 3
-60 =
-- Serialization efficiency - 100.00 100.00 | 100.00 100.00 100.00 o
[+
-- Transfer efficiency - 99.99 99.99 99.99 99.99 99.98 :CJ‘
-40 Y
- Computation scalability - 100.00 81.62 109.40 105.59 108.72 &
-- IPC scalability - 100.00 82.44 108.79 106.95 110.52
20
-- Instruction scalability - 100.00 99.76 99.52 98.72 98.24
- Frequency scalability - 100.00 99.24 101.04 100.01 100.13
]

Figure 13: Strong scaling and POP efficiency metrics for Region 9 of PLUTO.

This region is only used during the magnetic field update with the constrained transport formalism (see
Figs. 12 - 13). Unlike the other regions, this one is strictly multidimensional, and it is called only once per
time-stepping stage. For this reason, however, array access is necessarily strided. While this region does not
contain communication, it needs to be further analyzed and optimized for faster array access, especially in view

of its porting on GPUs architectures.

Page 26 of 133

This document is Public (PU)

and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2.7 Boundary - Region 10

This is a fundamental routine as it contains basically all the process communications and it is called 3 times
per step.

The Boundary() function sets both internal and physical boundary conditions on one or more sides of the
computational domain. It is used to fill ghost zones of both cell-centred and face-centred data arrays.

The type of boundary conditions at the leftmost or rightmost side of a given grid is specified by the integers
grid[dir] .1lbound or grid[dir].rbound, respectively. When this value is different from zero, the local proces-
sor borders the physical boundary and the admissible values for 1bound or rbound are OUTFLOW, REFLECTIVE,
AXTISYMMETRIC, EQTSYMMETRIC, PERIODIC, SHEARING or USERDEF (in our test problem, outflow boundary are
used). Conversely, when this value is zero (internal boundary), two neighbouring processors that share the
same side need to fill ghost zones by exchanging data values. This step is done here only for parallel computa-
tions on static grids.

We focus on the predictor step, g-intStage=1 to profile only once the routine.

Region 18 detail @ plute_1024_ 2.auto_chop.prv #3
THREAD 1.1.1

M Outside MPI
B MPI_Barrier
M MPI_Sendrecv
B MPI_Testall

Figure 14: Zoomed traces for Region 10 of the PLUTO from Paraver showing the structure of the region.

Number of processes 1024 2048 4096 8192 16384
Elapsed time (sec) 0.223618 | 0.183395 | 0.097785 | 0.124054 | 0.05205
Efficiency 1.0 0.609662 | 0.571708 | 0.225323 | 0.268513
Speedup 1.0 1.219324 | 2.286833 | 1.802586 | 4.296215
Average IPC 0.697869 | 0.804410 | 0.948088 | 0.962978 | 1.297987
Average frequency (GHz) | 2.065552 | 2.064866 | 2.062466 | 0.478057 | 2.063176

Table 9: Overview of the key performance metrics of the Region 10 of PLUTO.

Page 27 of 133

2.7 Boundary - Region 10

17.51

15.01

12.51

10.0+

Speedup

7.5

5.0

2.5

0 4000 8000 12000 16000

Total Threads
1024 2048 4096 8192 16384

) - 100
Global efficiency
-- Parallel efficiency 26.99 18.74 20.37 m 13.45

— Load balance - 50.04 50.66 48.69 57.24 41.33 20
-- Communication efficiency - 53.94 41.85 61.00 3
-- Serialization efficiency - 94.71 98.25 96.74 99.18 88.63 5 g
-- Transfer efficiency - 56.95 43.25 61.51 %
-- Computation scalability - 100.00 93.63 92.13 71.08 4 5
-- IPC scalability - 100.00 115.27 135.85 137.99 185.99
- Instruction scalability - 100.00 81.26 67.92 48.47 20
- Frequency scalability - 100.00 99.97 99.85 99.88
0

Figure 15: Strong scaling and POP efficiency metrics for Region 10 of PLUTO.

The loss of performance observed for more than 2 200 threads (see Figure 15) may be caused by an incorrect
workload already present during the initial MPI domain decomposition phase. Note that this region is where
most of the inter-CPU or inter-node data communication takes place. This region is based on the message
passing interface (MPI) protocol. While in previous versions of the code the data exchange was based upon
MPI derived data types, it has here been rewritten using more basic operations, based on standard buffer copy,
followed by Send/Recv call and the copy back onto the main array. In terms of debugging and profiling, this
function is the one with the highest priority.

This document is Public (PU)
Page 28 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

2.8 Conclusion

Performance analysis on PLUTO shows a good scaling but it also highlights important aspects to look at. The
critical aspect of every region seems to be the ”Load Balance”. The reason behind the low values of it need to
be investigated.

Regions #03 (Right hand side) and #06 (Riemann solver) are computationally intensive although they do
not contain communication between CPUs. Both can therefore be selected for potential exploitation of advanced
vectorization units or accelerators. The loss of performance visible at 2 800 threads indicates a strong workload
unbalance. More work is needed in order to address this shortcoming. This will be taken care of in the next
month’s activities.

The CT_Update() (region #09) is used during the magnetic field update with the constrained transport
formalism. Unlike the other regions, this one is strictly multidimensional and it is called only once per time-
stepping stage. For this reason, however, array access is necessarily strided. While this region does not contain
communication it sill needs to be further analyzed and optimized for faster array access, specially in view of its
porting on GPUs architectures.

This boundary region (#10) is based on the message passing interface (MPI) protocols. While in previous
versions of the code the data exchange was based upon MPI derived data type, it has here been rewritten
using with more basic operation, based on standard buffer copy, followed by Send/Recv call and the copy back
onto the main array. Region 10 analysis highlight possible critical issues in ” Transfer Efficiency”. This region
requires special attention containing all inter-process communication.

In terms of debugging and profiling, this function is the one with the highest priority.

Page 29 of 133

3 OpenGadget

OpenGadget is a code for cosmological simulations. It solves the gravitational and hydrodynamical equations
that rule the formation and evolution of cosmic structures.

It computes the gravitational forces with a hierarchical tree algorithm in combination with a particle-
mesh scheme for long-range gravitational forces. Then the fluid flows are computed using smoothed particle
hydrodynamics (SPH) or Meshless Finite Mass (MFM). In addition, OpenGadget contains multiple sub-modules
to describe various physical processes (e.g. radiative cooling, star formation, stellar feedback, magnetic fields,
black holes, just to name the major ones) that shape the fundamental properties of baryons in the Universe.

OpenGadget can be used for a wide variety of astrophysical problems, ranging from colliding and merging
galaxies to the formation of large-scale structure in the Universe. It can also be used to study the dynamics of
the intergalactic medium, or star formation and its regulation by feedback processes.

OpenGadget originally evolved from the publicly available Gadget2 code [9]. OpenGadget has been improved
significantly compared to its base version by, e.g. adding a new state-of-the-art SPH implementation [10], a
MFM solver [11] as well adding OpenACC support to run on GPUs [12].

3.1 Use-case description

In this first performance evaluation, cosmological boxes of different sizes have been used. As the denomination
suggests, cosmological boxes are built as fair samples of the Universe. In these boxes, the matter distribution
and clustering are substantially homogeneous and their statistical properties are aimed to be similar to those of
the Universe (at the scale of interest). The fact that the cosmological structures (e.g.: galaxies and clusters of
galaxies) are homogeneously distributed in the computational domain renders this problem more easily balanced
in terms of workload. These cosmological boxes (hereafter simply ”"box”) are characterized by two fundamental
parameters: (i) the physical size of the volume it represents, which is commonly expressed as the edge length
of the box in Megaparsec (Mpc) and (i3) the number N, of particles that are used to sample the distribution
of matter within the volume. The last number is commonly referred to as N, = 2 x N2, where Ng is the grid
number used to generate the particles in the initial conditions, and the factor x2 descends from the fact that
we include both ordinary baryonic and dark matter particles.

The physical size of the box affects the number and size of sub-structures, such as galaxies and clusters of
galaxies, which are simulated. In general, it can be said that the larger the volume the larger the number of
structures and the maximum size of those sub-substructures. The number of particles, instead, affects the mass
resolution; in other words, the larger the number of particles used, the higher the accuracy in both following
the dynamics and describing the internal structures of collapsed objects.

For this study, we have conducted simulations of a set of boxes whose parameters are details in Tab. 10.

Box size/edge length / N, | 643 1283 256° 8003
30 Mpc Box_064_.30 Box-128_30 Bo0x_-256_30 -
60 Mpc - Box_128_60 - -
120 Mpc - - Box_256_120 -
375 Mpc - - - Box_800.375

Table 10: The set of cosmological boxes generated for the profiling activity along the project. The boxes are
referred to as BOX_N,,_SIZE where the ”size” refers to the side length of the box.

Figure 16 and 17 show a projection of the gas and stellar distribution, coloured by density, at redshift 0O
(i.e. after ~ 13 billion years of evolution). Here the simulated volume remains constant, while the accuracy
and resolution are increasing with the number of particles /V,. As the number of particles increases, the
computational cost of simulating the same region increases too. This increase does not scale linearly due to the
costs related to the calculation of the gravitational tree, which scales with the number of particles as N logN.
We therefore expect the computation to be more demanding by a factor of minimum 2 8 while moving from
the Box_064_30 to Box_128_30.

Enlarging the number of particles does not only have an effect on the calculation of the gravitational tree but
also on the frequency of its calculation. As a larger number of particles results in a more accurate description of
forces between particles, the length of time steps has to be reduced. This results in a more expensive calculation
as a larger number of time steps has to be calculated to run the simulation for the same global time. It has
been found empirically — since it is difficult to draw theoretical expectations for such a complex code —, that an

This document is Public (PU)
Page 30 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

(a) Box_064_30 GAs (b) Box_-064_30 STARS

(c) Box_128_30 GAsS (d) Box-128_-30 STARS

(e) Box_256-30 GAS (f) Box_256_30 STARS

Figure 16: Projection of gas (left column) and stellar (right column) distribution at z ~ 0 (i.e. at the present
time, after ~ 13 billion years of evolution) in the 30 Mpc boxes. Each row shows the simulation of the same
box resolved with a different number N, of particles: 643, 128% and 256* in the top, medium and bottom
rows respectively. As the level of details increases from top to bottom, i.e. with increasing N, the resolution
increases as well.

Page 31 of 133

3.1 Use-case description

(a) Box_064_30 GAs (b) Box_-064_30 STARS

(c) Box_256_120 cAS (d) Box-256_-120 STARS

Figure 17: Projection of the gas (left column) and stellar (right column) distribution at z ~ 0 (i.e. at the present
time, after ~ 13 billion years of evolution) in the 643,30 Mpc and 2563, 120 Mpc boxes (top row and bottom
row respectively), where lighter colour indicate a stronger matter density. While the box size remains constant
the number of particles N, increases from top to bottom, by which the level of detail increases simultaneously.

This document is Public (PU)
Page 32 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

increase in the number of particles by a factor of 2, results in a ~ 12 times longer run time. Hence, we expect
that the computational cost of Box_128_30 and Box_256_30 are ~ x12 and ~ x144 larger with respect to
Box_64_30.

With the boxes defined above, we are able to study the Strong Scaling, where we have defined two different
cases:

1. small case: Box_256_30 (2 x 2563 initial particles) run with [1:128] nodes. This test may be affected
by the parallel overhead with more than 16 nodes because of the relatively small amount of particles per
node;

2. large case: Box_800_375 (2 x 8003 initial particles) run with [16:256 nodes]. This test has been selected
for testing between 16 and 64 compute nodes in the following sections.

It is also important to note that the same scaling comparison should be conducted at different cosmic epochs
as the clustering of the matter is strongly different at different redshifts, becoming much more significant
at present times compared to earlier times. That translates into two basic effects: (i) the average distance
of particles in collapsed structures is smaller. This results in larger forces, which requires a more accurate
integration and therefore smaller time-steps; (i¢) the gravitational tree is in average much deeper and the
tree-related operations become more costly.

In this document, for a matter of simplicity, we focus on the case of the Strong Scaling using the small boxes
at z =~ 0, where the clustering of the matter is the largest. We were not able to simulate the 8003 case down to
the relevant cosmic epochs, due to the limited run time provided.

Page 33 of 133

3.2 High-level code structure

3.2 High-level code structure

In simple terms the code consists of two parts. Firstly the initialisation, which consists of reading initial
conditions , reading the parameter file and initializing the required physical modules. And secondly the body
of the code, an ”infinite” time loop. Each of these time steps consists of a series of subsequent calculations:
the estimate of the gravitation acceleration, of the hydrodynamical acceleration and of the ”extra-physics”
(with which we indicate all the physical processes for baryons, like the radiative cooling the star-formation, the
stellar feedback, the black-holes feedback,...). In addition, the domain decomposition, which amounts to the
re-distribution of particles to keep the work as balanced as possible, is performed depending on the evaluation
of some global and local conditions. OpenGadget’s main function is based on this while loop iterating through
the time steps until the end time is reached. For the performance test we have chosen to concentrate on the
high-level sections that are responsible for the majority of the computation and communication. A simplified
view, including the profiling regions, is shown in Figure 18.

-

int main(){
do_initialisation();

while (1){
EXTRAE_EVENT_START(NumCurrentTimeStep) // step region, or region 0

write_snapshot_if_desired();

if (Time >= maxTime){
write_snapshot ();
break;

}

find_timesteps ();
do_first_halfstep_kick();
find_next_sync_point_and_drift ();

// compute gravitational forces
EXTRAE_EVENT_START (EXTRAE_REG_DD1) // region 1
domain_decomposition_intensity_decision();
EXTRAE_EVENT_STOP (EXTRAE_REG_DD1)

set_non_standard_physics_for_current_time ();

EXTRAE_EVENT_START (EXTRAE_REG_DD2) // region 2
domain_decomposition_intensity_execute ();
EXTRAE_EVENT_STOP (EXTRAE_REG_DD2)

EXTRAE_EVENT_START (EXTRAE_REG_GRAV) // region 3
compute_grav_accelerations ();
EXTRAE_EVENT_STOP (EXTRAE_REG_GRAV)

// compute fluid flows

EXTRAE_EVENT_START (EXTRAE_REG_DENS) // region 4
compute_densities ();

EXTRAE_EVENT_STOP (EXTRAE_REG_DENS)

EXTRAE_EVENT_START (EXTRAE_REG_HYDRO) // region 5
compute_hydro_accelerations ();
EXTRAE_EVENT_STOP (EXTRAE_REG_HYDRO)

do_second_halfstep_kick();

// calculate additional physics
EXTRAE_EVENT_START (EXTRAE_REG_PHYS) // region 6
calculate_non_standard_physics ();

EXTRAE_EVENT_STOP (EXTRAE_REG_PHYS)

EXTRAE_EVENT_STOP (GET_EVENT_NUMBER (All.NumCurrentTiStep-1))

Figure 18: Simplified high-level code structure of OpenGadget.

This document is Public (PU)
Page 34 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

States of Timestep 5 @ tracefile_l.prv
THREAD 1.1.1

Timestep 5 @
THREAD 1.1.1

Timestep 5 Region 1 @

THREAD 1.1.1

Timestep 5 - Region 2 @
THREAD 1.1.1

THREAD 1.1

THREAD 1

THREAD 1

THREAD

L3926 us

Timestep 5 - Region 3 @
THREAD 1.1.1

THREAD 1

THREAD 1

THREAD 1

THREAD 1

Region 4 @

Timestep 5 -
THREAD 1.1.1

Timestep 5 - Region 5 @

THREAD 1.1.1

Timestep 5 -
THREAD 1.1.1

Region & @

THREAD 1.1
THREAD 1
THREAD 1
THREAD

L3268 us

Figure 19: Traces for all regions in

W 1dle
M Running
[scheduling and Fork/Join

tracefile_l.prv

tracefile_l.prv

tracefile_l.prv

tracefile_l.prv

tracefile_l.prv

tracefile_l.prv

tracefile_l.prv

Gadget from Paraver showing the high-level structure of the code.

Page 35 of 133

3.3 Timestep - Region 0

3.3 Timestep - Region 0

This region contains the whole computation of a single time step. This includes the writing of snapshots (even
though we avoided performing I/O in the present tracing activity), the gravity and hydro calculations as well as
the calculation of additional physics. It also includes some activities that we are not tracing explicitly as single
regions: the determination of the individual subsequent time-step for the particles, the half kicks and the drift
of particles, among some minor others. Embedded within this region are the EXTRAE regions 1 to 6 (see next
sections for a detailed description of each region).

Region 0 detail @ tracefile_l.prv
THREAD 1.1.1

tracefile_0.00801.auto_chop.prv

M outside MPI
B MPI_Isend

B MPI_Irecw

O MPI_Waitall
[0 MPI_Bcast

W MPI_Barrier
B MPI_Reduce

B MPI_Allreduce
B MPI_Alltoall
B MPI_Allgather
O MPI_Allgatherv
B MPI_Sendrecv

Figure 20: Zoomed traces for Region 0 of the Gadget from Paraver showing the structure of the region. For
OpenMP timeline the different colours denote different OpenMP parallel regions or functions.

By its very nature, this "macro-region” encompasses

1. All the communications performed along a simulation run (except for the initialization part that we are
omitting). The main communication patterns involved are the following:

e broadcasts/synchronization; these are communications involving few bytes that are mostly about
propagating/collecting values with one-to-may, many-to-many, many-to-one patterns to ensure syn-
chronization.

e P2P sendrecv; these are communications mostly performed in the tree-related routines. They happen
both in the domain decomposition and, above all, in the tree-walk that is exploited for the neighbour
search, which in turn is an ubiquitous task.

2. All the calculations performed in a simulation run. There is a huge diversity of math operations with very
different arithmetic intensities and vectorization potential.

This document is Public (PU)
Page 36 of 133 and was produced under SPACE project EU GA 101093441

D2.1 — PERFORMANCE PROFILING AND BENCHMARKING

e The Gravitational part basically consists of accumulating % terms over j = 1, .., N neighbours each
with mass m;, or from multi-polar expansion of distant tree nodes. The force from most distant

particles is calculated with a Particle-Mesh and hence via FFT.

We remind the reader that a Particle-Mesh algorithm consists in the following steps:

(a) spreading of particles’ relevant properties over a grid; in this case, that amounts to obtaining
the density field p over the grid.

(b) solving the equations using FFT over the grid; in this case, we solve the Poisson equation
Ad = 47 Gp, where @ is the gravitational potential.

On the other side, the hydrodynamical force is significantly more complex from the computational
point of view. First, it needs to

] m- 4 Threads per Process
47
351
s 3
S]
gj]
Q 2.51
w J
2 - ¢
1 &
1.5
1]
—T—trrrr1r ftrrr 1 trrrr tr o+t T
2000 3000 4000 5000 6000 7000 8000
Total Threads
2048(512x4)[1] 4096(1024x4)[2] 8192(2048x4)[3]
Global efficiency B 71.I59 63:92 33.‘53 [0
-- Parallel efficiency - 71.59 64.76 45.05 -80
-- Load balance 1 85.18 83.40 73.27 3
-- Communication efficiency & 84.05 77.64 61.49 - 60 E.
-- Computation scalability - 100.00 98.70 85.52 20 %
- IPC scalability - 100.00 100.43 98.24 &
-- Instruction scalability - 100.00 98.33 86.57 20
-- Frequency scalability - 100.00 99.95 100.55
0
2048(512x4)[1] 4096(1024x4)[2] 8192(2048x4)[3]
-- Hybrid Parallel efficiency - 71.‘59 64‘.76 45.‘05 100
-- MPI Parallel efficiency - 77.05 70.47 56.19 | a0
- MPI Load balance E 91.58 90.49 91.23
-- MPI Communication efficiency 1 84.13 77.88 61.59 -60 %
-- Serialization efficiency - E‘
-- Transfer efficiency - -40 @
- OpenMP Parallel efficiency - 92.92 91.89 80.18 £
— OpenMP Load Balance i 93.01 92.17 80.31 20
-- OpenMP Communication efficiency- 99.90 99.70 99.83 0

Figure 21: Strong scaling and POP efficiency metrics for Region 0 of Gadget.

Page 37 of 133

3.3 Timestep - Region 0

Number of processes 2048 4096 8192
Elapsed time (sec) 79.273902 | 44.39593 | 36.827857
Efficiency 1.0 0.892806 | 0.538138
Speedup 1.0 1.785612 | 2.152553
Average IPC 1.131789 1.136640 | 1.111919
Average frequency (GHz) | 3.186542 | 3.184966 | 3.204001

Table 11: Overview of the key performance metrics of Region 1 of Gadget.

We have selected a timestep where the domain decomposition occurs (see Regions 1 and 2, Section 3.4 and
3.5 respectively). The overall time-step execution is shown in Figure 20. The POP metrics and scalability are
shown in Figure 21 and Table 11. Overall, the problems that limit the scalability identified here are the MPI
communication efficiency and load balance, which can be mostly ascribed to the