BB Ref. Ares(2024)4768407 - 02/07/2024

—
SHPARCE

SCALABLE PARALLEL ASTROPHYSICAL CODES FOR EXASCALE

Code release (alpha)
Deliverable number: D1.3

Version 1.0/1.0

B -
Co-funded by = : : * EuroHPC
the European Union S

Funded by the European Union. This work has received funding from the European High
Performance Computing Joint Undertaking (JU) and Belgium, Czech Republic, France,
Germany, Greece, Italy, Norway, and Spain under grant agreement No 101093441

Project Information

Project Acronym: SPACE
Project Full Title: Scalable Parallel Astrophysical Codes for Exascale

Call: Horizon-EuroHPC-JU-2021-COE-01
Grant Number: 101093441
Project URL: https://space-coe.eu

Document Information

Editor: Pranab J Deka (KUL)

Deliverable nature: Report (R)

Dissemination level: Public (PU)

Contractual Delivery Date: | 30.06.2024

Actual Delivery Date 01.07.2024

Number of pages: 38

Keywords: modules and kernels, optimisation, scalability, GPU porting
Authors: Benoit Commergon — CNRS

Pranab J Deka — KU Leuven
Klaus Dolag — LMU
Georgios Doulis — GUF
Kristian Kadlubiak — IT4I
Geray Karademir — LMU
Andrea Mignone — UNITO
Gino Perna — ES

Khalil Pierre — GUF
Marco Rossazza — UNITO
Giuliano Taffoni — INAF
Luca Tornatore — INAF
Stefano Truzzi — UNITO
Robert Wissing — UiO

Peer review: Kristian Kadlubiak (IT4I)
Marc Sergent (Eviden)

History of Changes

Release | Date Author, Organisation Description of changes
08.04.2024 | Gino Perna (ENGINSOFT), Luca Tor- | Started the document

natore (INAF)

0.2 18.06.2024 | Marco Rossazza, Andrea Mignone, Ste- | PLUTO section
fano Truzzi (UNITO)

0.3 19.06.2024 | Robert Wissing (UiO) ChaNGa section

0.4 21.06.2024 | Benoit Commergon (CNRS) RAMSES section
Georgios Doulis, Khalil Pierre (GUF) FIL and BHAC sections

0.5 22.06.2024 | Pranab J Deka (KUL) iPic3D section

0.6 23.06.2024 | Luca Tornatore (INAF), Geray Ka- | OpenGADGET section
rademir (LMU)

0.7 27.06.2024 | Kristian Kadlubiak (IT4I), Marc Ser- | Proofreading
gent (Eviden)

1.0 01.07.2024 | Pranab J Deka (KUL) Final version assembled

https://space-coe.eu

. -

Scalable Pa‘raIIeI AstrophyS|caI Codes

for Exascale

DISCLAIMER

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European High Performance Computing Joint Undertaking (JU) and Belgium, Czech
Republic, France, Germany, Greece, Italy, Norway, and Spain. Neither the European Union nor the granting
authority can be held responsible for them.

UNIVERSITA

DI TORINO

& @8% UNIVERSITY
117 OF OSLO

=VIDEN

an atos business

*
@ nar CINECA | v LEUVEN

DI ASTROFISICA

LUDWIG-
MAXIMILIANS-

UNIVERSITAT
MUNCHEN

FOUNDATION FOR RESEARCH AND TECHNOLOGY - HELLAS

S7HITS

Heidelberger Institut fiir
Theoretische Studien

II

COMPUTER
ENGINEERING

Barcelona
Supercomputing

Center

Cantro Nacional de Supercomputacién

GOETHE @:

UNIVERSITAT

FRANKFURT AM MAIN

(8) ENGINSOFT

The space above and below the message intentionally is left blank.

D1.3 — CODE RELEASE (ALPHA)

Executive Summary

This document outlines the current achievements and ongoing efforts within the SPACE CoE. The primary focus
is on optimising and porting kernels or modules of the codes involved in SPACE CoE to GPU architectures and
adapting them for efficient use on EuroHPC JU clusters. These advancements are crucial for addressing the
increasing computational demands of large-scale, long-duration astrophysical simulations.

The document is structured to provide detailed updates for each code involved in the project, covering
the current status of GPU porting, optimisations, CI/CD implementation, and performance on EuroHPC JU
clusters. Let us also note that all of the seven codes now have an open-source/public repository, allowing
the progress within the code to be tracked in the respective repositories. The combined efforts in these areas
demonstrate the project’s commitment to advancing HPC capabilities and supporting the computational needs
of astrophysical research.

Page 1 of 38

CONTENTS

Contents
1 Introduction
2 OpenGADGET
2.1 Imtroduction.
2.2 CI/CD implementation
2.3 Running on EuroHPC JU Clusters . . .
2.4 GPU porting and Kernel Optimisations
3 PLUTO
3.1 Imtroduction.
3.2 CI/CD implementation
3.3 Running on EuroHPC JU Clusters . . .
3.4 GPU porting and Kernel Optimisations
3.5 Alpha code release: Final remarks . . .
4 BHAC
4.1 Introduction.
4.2 CI/CD implementation
4.3 Running on EuroHPC JU clusters . . .
4.4 GPU porting and Kernel Optimisations
5 ChaNGa
5.1 Imtroduction.
5.2 CI/CD implementation
5.3 Running on EuroHPC JU clusters . . .
5.4 GPU porting and Kernel Optimisations
6 FIL
6.1 Introduction.
6.2 CI/CD implementation
6.3 Running on EuroHPC JU clusters . . .
6.4 GPU porting and Kernel Optimisations
7 iPic3D
7.1 Imtroduction.
7.2 CI/CD implementation
7.3 Running on EuroHPC JU Clusters . . .
7.4 GPU porting and Kernel Optimisations
8 RAMSES
8.1 Imtroduction.
8.2 CI/CD implementation
8.3 Running on EuroHPC JU clusters . . .
8.4 GPU porting and Kernel Optimisations
9 Conclusions

Page 2 of 38

12
................................ 12
................................ 12
................................ 13
................................ 13
................................ 16

17
................................ 17
................................ 17
................................ 17
................................ 19

21
................................ 21
................................ 21
................................ 22
................................ 22

26
................................ 26
................................ 26
................................ 26
................................ 26

28
................................ 28
................................ 28
................................ 28
................................ 29

33
................................ 33
................................ 33
................................ 33
................................ 34

37

This document is Public (PU)
and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

List of Figures

1

(=}

10

11

12

13

This figure displays all basic tests of the CI/CD pipeline for OpenGADGET. It is intended that
all of these tests have to pass before merging on the main_development branch. 8
The complete results of strong scaling test for both the Gravity-only (upper panel) and Hydro
(bottom panel) cases, from 4 up to 3072 nodes on Leonardo Booster. The left column shows
the number of nodes vs speed-up and the left node the scaling factor vs efficiency. The Black
dashed lines represent ideal speedup. In all the runs, the MPI/OpenMP configuration is such
that one MPI task was running per GPU, while all the 32 available CPU cores were filled with
OpenMP threads, which amounts to 4 MPI tasks/node and 8 threads/task. Note that some issues
arose in domain decomposition with the 20483 case after 512 nodes, and a network problem has

invalidated the 3072 nodes run of the 40963 case. 10
Diagram of the Reconstruct-solve-average (RSA) strategy. The kernels are: Boundary (K1),

Reconstruct (K2), RiemanFlux (K3), RightHandSide (K4) and CT_Update (K5) 14
Weak scaling test on Leonardo running the 3D MHD Orszag-Tang problem. Here 1 node equals

4 GPUs (for GPU runs) or 32 cores (for CPUruns). 14
Strong scaling of BHAC on Leonardo DataCentric and LUMI-C. 18
Weak scaling of BHAC on Leonardo DataCentric and LUMI-C. 18

Example of Nsight Systems traces of a) performance hindering semi-sequential kernel and b) fully
parallel kernel. The problematic kernel can be easily identified by abnormally long runtime and
subsequently verified by looking at launch configuration. In this case, the performance increase
is approx. 116-fold. L 20
The top figure shows the scaling for a single time step, while the bottom show the scaling of
only the gravity module. These simulations was performed on the Karolina-CPU, LUMI-C, and
Leonardo-DCGP partitions using a cosmological box containing 2 billion particles within a 25
Mpc volume, using gravity only. The speedup curves have been normalized by the results from
the 32-node run for each cluster. When the runtime of gravity becomes comparable to that of
domain decomposition (DD) and load balancing (LB), the parallel efficiency declines. This is
because DD and LB does not scale as well as gravity. The better single time step scaling seen in
LUMI-C is due to better scaling of DD and LB (likely due to differences in MPI and architecture).
We should note that this is without the use of the Metal.B optimisation used in [1](which limits
the overhead by DD and LB), as this is currently not functioning properly in current version of
ChaNGa/Charm. i e 23
Scaling plots of the galaxy merger simulations. Left shows single time step scaling (can be
compared with Deliverable D2.1 plot) and right show gravity+SPH module scaling. We can see
much better scaling with the addition of tree piece replication and more communication threads. 24
Projections traces of single time step of the merger simulation, where y axis shows all the active
processors and x axis the time. The colors represent what each processor is working on or if it’s
idle (see legend to right). The top figure shows the result from the old version and the bottom
shows the result from the version with tree replication and increased communication threads. We
can see a massive reduction in the idle time between the local gravity calculation and the start
of the remote gravity calculation. For more details about the regions see Deliverable D2.1 24
Scaling test of FIL AMR and Unigrid performance on HAWK https://www.cardiff.ac.uk/
advanced-research-computing/about-us/our-supercomputers. In this picture dashed lines
represent ideal scaling, solid lines are the current performances. Red lines are efficiency, blue
lines normalised speedup oL 27
Left: figure shows the basic test of the CI/CD pipeline that needs to be passed for the SPACE_CPU
branch. The “unit-test-job” carries out tests for the particle mover, moment gatherer, and field
solver, in addition to problem initialisation and writing data to files. Right: screenshot of the
final stages of the CI test - one can see that the errors in the electric and magnetic fields, compared
to the reference solution are exactly 0, thereby indicating correct results of the latest commit in
https://code.itdi.cz/space_coe/iPic3D. Lo 29
Screenshot of the analysis of the particle mover module, being run on a single GPU using Ope-
nACC, using NVIDIA Nsight Systems. We are profiling the code with nvtx to better understand
the compute regions, data transfer, the wait times, and synchronisation. 31

Page 3 of 38

https://www.cardiff.ac.uk/advanced-research-computing/about-us/our-supercomputers
https://www.cardiff.ac.uk/advanced-research-computing/about-us/our-supercomputers
https://code.it4i.cz/space_coe/iPic3D

LIST OF TABLES

14

15

16

Strong scaling of RAMSES on a Sedov-Taylor blast test. The grid corresponds to the small
configuration of RAMSES test case 1, i.e. a resolution of 5123. The total wall-clock time is
given as a function of the number of MPI processes. Overall, the Karolina, Leonardo DCGP, and
LUMI-C clusters show similar performance.
Strong scaling of RAMSES on a Sedov-Taylor blast test with different number of OpenMP threads
with a fixed number of cores (MPI ranks x OpenMP threads)
Weak scaling of SHAMROCK-SPH and SHAMROCK-RAMSES on Adastra that represents the
total number of cells or particles updated per second on the entire computational domain for
a pure hydro test. The first attempt to run a Godunov AMR solver (purple and grey) already
shows better performance than the SPH kernels. Indeed, 50 neighbours are required for SPH,
while the kernel is more compact for the grid and allows to update more cells per second.

List of Tables

1

Page 4 of 38

Comparison of the computation cost, in terms of time elapsed in seconds, of the particle mover
on 32 CPU cores (MPI parallelised) and on a single NVIDIA A100 GPU on Leonardo Booster for
five different configurations of particles per cell. It is to be noted that the time elapsed reported
for the GPU runs also takes into account the time needed for data transfer from the host to the
device and vice versa. We expect significantly higher speedups once we finish offloading the other
two modules and the entire data remains exclusively on the device for as long as possible.
List of repository for the codes involved in SPACE CoE.

34

36

This document is Public (PU)

and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

List of Acronyms

AMR
BH
BHOSS
CD

CI

CoE
DCGP
DD

ET

EuroHPC JU

GRMHD
GRRT
HD

HLL
HLLC
HLLD
HLRS
HPC

LB

LRZ
MHD
MHLLC
MP

MPI
NCCL
PIC
ResRMHD
SPACE
SPH
SPMHD
SRHD
SRMHD
TOV
TVDLF
WENO

Adaptive Mesh Refinement

Black Hole

Black Hole Observations in Stationary Spacetimes
Continuous Deployment

Continuous Integration

Centre of Excellence

Data Centric General Partition

Domain Decomposition

Einstein Toolkit

European High Performance Computing Joint Undertaking
General Relativistic Magnetohydrodynamics
General-Relativistic Ray-Tracing

Hydrodynamics

Harten-Lax-van Leer

Harten-Lax-van Leer contact

Harten-Lax-van Leer discontinuity
Hochstleistungsrechenzentrum Stuttgart

High Performance Computing

Load Balancing

Leibniz-Rechenzentrum

Magnetohydrodynamics

Maxwell-Harten-Lax-van Leer contact
Monotonicity Preserving

Message Passing Interface

NVIDIA Collective Communications Library
Particle-in-Cell

Resistive Relativistic MHD

Scalable Parallel Astrophysical Codes for Exascale
Smoothed Particle Hydrodynamics

Smoothed Particle Magnetohydrodynamics
Special Relativistic Hydrodynamics

Special Relativistic MHD
Tolman—Oppenheimer—Volkoff

Total Variation Diminishing Lax-Friedrichs scheme

Weighted Essentially Non Oscillatory

Page 5 of 38

1 Introduction

The advancement of high-performance computing High Performance Computing (HPC) applications is pivotal
for the progress of scientific research, particularly in fields demanding substantial computational power such as
astrophysics. This deliverable outlines the efforts undertaken within the Scalable Parallel Astrophysical Codes
for Exascale (SPACE) Centre of Excellence (CoE) to optimize and port several key HPC applications to GPU
architectures and adapt them for efficient use on European High Performance Computing Joint Undertaking
(EuroHPC JU) clusters. These initiatives are critical in addressing the growing computational demand of
large-scale long-duration complex simulations.

GPUs, with their superior parallel processing capabilities, offer a significant advantage over traditional CPU-
based computations. This deliverable focuses on the recent advancements of porting kernels and modules to
GPUs, optimising to achieve further speedups, and in some cases, the scaling results on multiple GPUs. It is
worth noting that some applications are in the initial stages of porting and optimising kernels on GPUs and
they have presented a gist of the planned work in the upcoming months.

Another central aspect of this deliverable is the implementation of Continuous Integration (CI)/Continuous
Deployment (CD) pipelines. These pipelines facilitate automated testing, integration, and deployment of code.
CI/CD approach ensures that code updates are seamlessly incorporated and rigorously tested, maintaining
high standards of code quality and reliability. This collaborative framework not only streamlines development
processes but also fosters a dynamic and responsive development environment.

Finally, this deliverable also reports on progress in adapting these applications to EuroHPC JU clusters.
By ensuring that HPC applications, within the framework of SPACE CoE, are optimised for these clusters, we
aim to make advanced computational resources more accessible to researchers, thus broadening the scope and
impact of scientific investigations.

The following chapters are organised as one per code, where each code owner presents the current status of
GPU porting and optimisations involved in such, CI/CD implementation, and running on different EuroHPC JU
clusters. In summary, this deliverable details the progress made across various applications within the SPACE
project. The combined efforts in GPU porting, kernel optimisations, and CI/CD implementation demonstrate
our commitment to advancing HPC capabilities.

This document is Public (PU)
Page 6 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

2 OpenGADGET

2.1 Introduction

OpenGADGET is a Lagrangian code that solves the Vlasov-Poisson equations in a cosmological expanding
framework. The gravitational problem is solved numerically by coupling a Particle-Mesh algorithm for the
average field and a tree-based Barnes&Hut algorithm for the interaction with the close neighbourhood. In
addition, the Smoothed Particle Hydrodynamics (SPH) algorithm is used to solve the baryonic hydrodynamics.
A broader description of the code is available in §2 of D1.2.

2.2 CI/CD implementation

In the past, OpenGADGET used a private SVN repository combined with a Jenkins instance for continuous
integration. In April of this year, the developer repository of OpenGADGET was transitioned to a GitLab
repository hosted by Leibniz-Rechenzentrum (LRZ).

As the repository at the LRZ GitLab is private, we have mirrored the main_development branch to the IT4I
GitLab (https://code.it4i.cz/space_coe/opengadget3) for everyone in the CoE to have access to the code
as well as to see the current development. The public repository for the publication of OpenGADGET will
be hosted at the LRZ as well (https://gitlab.lrz.de/MAGNETICUM/OpenGADGET3). Since the public version
of the code is not ready yet it is currently empty. The publication of a functional public version including
documentation, etc. is aimed to be done by December 2024.

The implemented tests themselves can be split into two main categories. Firstly there are regular tests,
which run at every merge request as well as at each night during the week. Secondly, there are additional tests,
which are run less frequently due to their larger computational demand. Both types of tests are described in
more detail in the following section.

In general, our CI/CD pipeline is set up so that it automatically runs on these occasions:

e when scheduled: one pipeline at midnight each day.

e on merge request: all tests are executed for each merge request and have to be satisfied for the merge
request to be accepted.

e on demand: the pipeline (or parts of the pipeline) can be run by each developer on any branch to test
their recent developments at any time.

This pipeline is running on a small machine with 10 CPU cores at the LRZ in Garching near Munich and
can also be run on the machines by IT4I if necessary. For now, we have not yet run the pipeline on additional
JU machines, but are going to add this capability in the future (see Sec. 2.2).

Regular tests

The regular tests for OpenGADGET consist of tests with a total runtime of less than 10 minutes. The aim of
these tests is firstly to catch compilation errors and secondly to check the basic routines such as the SPH and
gravity solver. The short runtime allows us to run these tests for every merge to catch potential bugs early
during the development process. The pipeline for the regular tests consists of multiple stages, which can be
seen in Fig. 1.

e Indent: checking for indentation and coding style of changed files. This is only done for merge requests
and is currently allowed to fail as we have decided to change our code format just recently and aim to do
the formatting of the code at a specific time for all code files at once. For the format we have decided to
switch from a custom gnu-indent style to clang-format and the ”Microsoft” style.

e Config tests: in this test, six different configurations are used to build the code.

e Unit test: Here the integrity for all equations of state classes, the Riemann solvers, Matrix operations,
flux solvers, fluid vector classes and vector operations are verified.

e SPH tests: Running a Sod shock tube problem https://en.wikipedia.org/wiki/Sod_Shock_Tube ,
a Sedov blast wave problem https://en.wikipedia.org/wiki/Taylor?E2%80%93von_NeumannyE27%80%
93Sedov_blast_wave and a Sound wave test and comparing the result with their analytic solution using
SPH.

Page 7 of 38

https://code.it4i.cz/space_coe/opengadget3
https://gitlab.lrz.de/MAGNETICUM/OpenGADGET3
https://en.wikipedia.org/wiki/Sod_Shock_Tube
https://en.wikipedia.org/wiki/Taylor%E2%80%93von_Neumann%E2%80%93Sedov_blast_wave
https://en.wikipedia.org/wiki/Taylor%E2%80%93von_Neumann%E2%80%93Sedov_blast_wave

2.3 Running on EuroHPC JU Clusters

Indent_check Config_tests Unit_tests SPH_tests PES_tests MFM_tests Conduction_tests Gravity_tests
© Indent fs © config1 5) © Unittests fs © sPH_sedov © PES_Sedov s) © MFM_Sedov © Conduction_tempstep_la fs © Gravity MFM
© Config_csf) © SsPH_Sodschock 5} © PES_Sodshock) © MFM_Sodschock) © Conduction_tempstep_la_bicg (2 © Gravity_PES
© Config_dianoga_250xCRs (O © sPH.Soundwave (O © PEs_soundwave (O © MFM_Soundwave (C © Conduction_tempstep_ib_bicg (¢ © Gravity_SPH
© Config_magneticum
© Config_muppi

© Config_sh

Figure 1: This figure displays all basic tests of the CI/CD pipeline for OpenGADGET. It is intended that all
of these tests have to pass before merging on the main_development branch.

PES tests: Same tests as for SPH, but with pressure entropy SPH (PES).

MFM tests: Same tests as for SPH, but with a Meshless-Finite-Mass implementation.

Conduction tests: Testing the SPH conduction at different timesteps.

Gravity tests: in this test, the calculation of the gravity with all three hydro implementations is tested.

Additional tests

In addition to the relatively short test described above, we implemented two larger test cases to check the
capability to run a full simulation with full physics as well as the physical output of the code.

e Galaxy simulation: In this test, a full cosmological zoom-in simulation is executed to check the global
properties and results of the simulation (~90 CPUh).

e Magneto hydrodynamics test: This test checks the magnetic fields properties by running a Ryu and Jones
5A test [2] (~30 CPUh)

Each of these tests consists of two jobs: one running the simulation and a second to evaluate the output. The
focus of these tests is mainly the output of the simulation.

These tests provide the opportunity to test additional components such as the ability to run the simulation
for the full cosmic time, its runtime, its restart capabilities and its OpenMP and Message Passing Interface (MPI)
implementations as these tests are executed in parallel on 8 CPU cores. This allows us to check for potential
flaws in the code from a different point of view, even in the absence of hard errors. Due to their significantly
larger runtime of up to 13 hours on the current machine, these tests are not suited for daily tests. Instead, an
extended pipeline is executed on the weekends including these tests.

Future aims

While already having a substantial pipeline in place, we are going to add a few more tests to get an even
better assessment of the current status of the code. The first step here is to add additional tests for currently
untracked modules and config switches and to implement a measure for the code coverage. For this automated
testing of code coverage, we are currently searching for the best solution to our needs. As the porting to GPU
is a critical part of the code we aim to translate some of the tests to be executed on GPU as well. The major
issue for this task is the high demand for GPUs in general as for our test we would require to have reliable
access to at least one GPU. The final aim would be to verify the build of the code at different systems, such as
the SuperMUC-NG at the LRZ, Leonardo Booster and Data Centric General Partition (DCGP) at CINECA,
Karolina and Barbora at IT4I, and finally at JUPITER at JSC. As this will require the installation of GitLab
runners on each of these machines as well as triggering automated jobs this might become difficult due to the
different safety requirements of the different computation centres.

2.3 Running on EuroHPC JU Clusters

At the time of writing this document, the code has been compiled and ran on the the CPU partitions of the
EuroHPC JU clusters Karolina and Barbora (see CPU benchmarks in D2.1 and D2.2) and the scaling tests for
the GPU implementation were done on Leonardo’s Booster partition. In addition, compilation was done on
LUMI-C as well and we are currently applying for access to the rest of the EuroHPC JU clusters via an activity
by WP4.

This document is Public (PU)
Page 8 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

2.4 GPU porting and Kernel Optimisations
2.4.1 GPU porting

For the GPU porting of OpenGADGET, the modules with the largest contribution to the total runtime have
been chosen: the tree walk and the Barnes&Hut oct-tree.

Current status

In the larger framework of the code, the tree walk is called at multiple stages as the tree conveys information
about the spatial locality of the particles. This means that the computation of each physical process in which
a particle impacts additional particles relies on the tree walk to determine the neighbourhood of the active
particle. Or, conversely, to determine the neighbourhood that is affecting a target particle.

The current GPU implementation is based on porting the computationally heavy part of the tree-walk to
the GPU while keeping the global structure. Consequently, only the local contributions are computed on the
device, while the communication and all other aspects remain on the host. For this, a new data structure is
created, which only contains the information about the available particles, which is then communicated to the
device and back after the calculation is finished.

Using this approach allows us to implement the GPU tree walk by simply annotating CPU functions. The
benefit of this approach is that the same code is used on the host as well as on the device, so updates and bug
fixes on the tree walk itself are immediately available in both code versions.

Summarising, the following modules have been ported onto GPU in the current version:

1. Gravity calculation with tree The tree-walk and the Barnes&Hut algorithm have been offloaded,
adding necessary directives to the existing code. The entire tree array is uploaded to GPU, as well as
the subset of particles’ data that are of interest. For this purpose, a specific array is built, extracting the
relevant quantities from the larger structure that contains all the particles’ data.

2. SPH Hydrodynamics This module consists of two separate tree walks. The first one iteratively defines
the SPH neighbourhood of a target particle, i.e. the sphere radius that encompasses Ngpy neighbours.
Starting from a guess, the tree exploration is iterated with a different radius Rgpy until the number of
gas particles found within Rgpy is correct. The second walk iterates over the list of Ngpy neighbours to
estimate the hydrodynamical quantities and solve the hydrodynamics using the SPH approach.

3. Thermal conduction This process amounts to energy transport and is solved with a conjugate gradient.
As well as Hydrodynamics, it relies on a tree-walk to estimate the needed physical quantities in the
hydrodynamical neighbourhood within Rgpy.

NOTE: the GPU implementation has started before the project SPACE, and is due to the work of Dr. Antonio
Ragagnin and LMU’s staff. An important part of the work has been conducted during the first 18 months, either
by LMU within the SPACE project in collaboration with Dr. Ragagnin. Namely, several optimisations on the
Gravity part (mostly the overlapping of computation and communication) and the porting of the hydrodynamics
loop.

Scaling of the current GPU offloading

In the frame of SPACE, thanks to the collaboration with CINECA, we have been able to perform a large number
of tests and assess both the strong and weak scaling of the code using up to 3072 nodes (90% of Leonardo’s
Booster partition). However, due to the limitations of the available computational resources, we have not been
able to profile and assess the scaling of entire simulations but just of some initial time-steps.

We have chosen to simulate the computational boxes included in our scientific cases, explicitly generated for
this purpose (the entire set of initial conditions amounts to 3TB). However, we do not have evolved realisations
of these cases, since they are computationally very expensive. Then, we simulated only the beginning of the
Universe’s history at high redshift (we have generated the boxes at z = 50). The density distribution at that
epoch is very homogeneous, and that is reflected in a non-deep tree and in a very non-clustered distribution
of particles; this is a particularly favourable situation for our algorithm, and that is to be accounted for. In a
second scaling assessment campaign, we will be able to use evolved boxes or single-objects that come from the
results of other projects. For the strong scaling, we used boxes with 10243, 20482, and 40963 particles spanning
the whole amount of nodes (see Fig. 2) since a case that fits the lower end would lead to small amounts of

Page 9 of 38

2.4 GPU porting and Kernel Optimisations

STRONG gravity scaling (gpu)
Nr. of GPUs STRONG gravity scaling (gpu)
1000 10000

Nr. of GPUs

T 2.5 T T T T
| 1024° ——
| 2048° —0—
| 2 - 4096 .
-
= g15 - J
£ o
, H il — - — - — - — - — - — - — . — . — - —
P
‘ I
I 05
I
L . . . L 1 1 | | |
10 100 1000 0 5 10 15 20 25 30
Nr. of Nodes Scaling factor
STRONG hydro scaling (gpu)
Nr. of GPUs STRONG hydro scaling (gpu)
1000 10000 Nr. of GPUs
i T 13 ‘ ‘ ‘
| 1024° ——
| 1.2 2048° —0—
I 1.1
| =
2 a1
[g
g <
| g 5 0.9
z =
| £ *os
I
I 0.7
I
0.6
I
L 05
Nr. of Nodes Scaling factor

Figure 2: The complete results of strong scaling test for both the Gravity-only (upper panel) and Hydro
(bottom panel) cases, from 4 up to 3072 nodes on Leonardo Booster. The left column shows the number of
nodes vs speed-up and the left node the scaling factor vs efficiency. The Black dashed lines represent ideal
speedup. In all the runs, the MPI/OpenMP configuration is such that one MPI task was running per GPU,
while all the 32 available CPU cores were filled with OpenMP threads, which amounts to 4 MPI tasks/node
and 8 threads/task. Note that some issues arose in domain decomposition with the 20483 case after 512 nodes,
and a network problem has invalidated the 3072 nodes run of the 4096° case.

data per process at the high end, becoming artificially communication-dominated. On the other hand, a case
that could run on the whole machine could not fit in the memory of a small sub-set of nodes. The sequence
(10243, 12963, 16323, 20482, 4096°) has been used for weak scaling tests.

In Fig. 2 we show the results of the strong scaling test for both the gravity-only (upper panel) and the
hydrodynamics (lower panel) test cases. The speed-up and the parallel efficiency are on the left and right
columns, respectively. While the 10242 case behaves smoothly, slowly decreasing in efficiency which remains
> 80% for a 32x scaling factor, the 20483 case shows a sudden decrease beyond 16 x for both the Gravity and
the Hydro cases. Conversely, the 40963 case (which we run only for the Gravity-only case due to the limits on
the available computational time) exhibits a super-linear speed-up for 2x and 4x, while a malfunction in the
network led to a sudden increase in the communication time for 8x (3072 nodes). We plan to repeat this run
as soon as the whole machine is available for large tests.

As a general conclusion, the current GPU implementation offers a viable opportunity to run
a simulation with a net gain of about 3x, which is a very significant result given that state-of-the-art
simulations require a computational effort of the order of 107 core-hours.

This document is Public (PU)
Page 10 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

An updated GPU implementation

In a many-body code, such as OpenGADGETS3, we use the Barnes & Hut algorithm to estimate the force F;,
reducing the algorithmic complexity to O(N1logN) (compared to O(N?) via direct summation): relying on the
tree structure to distinguish between ”close particles” that are summed directly as in the former equation, and
”clusters of distant particles” that are considered as an effective unique particle whose contribution is summed
to Fl

The Barnes & Hut algorithm, in its ”classical” formulation, although reducing the algorithmic complexity,
proves to be inefficient on modern architectures and particularly on GPUs since it leads to a large amount of
thread divergence and locking. At the time of writing, we are developing an alternative formulation where we
aim to retain the overall NlogN scaling but should be more efficient on GPUs (and, possibly, on modern CPUs,
t00).

Our new strategy is based upon the following pillars:

e Grouping particles; performing the tree walk & evaluation from the same position for a group of spatially
closed particles while assigning same-group particles to same-warp threads allows (i) to shrink the number
of tree walks (as much as the ”grouping factor”) and (i¢) to synchronize the ops for threads on the same
warp (when assigning a target particle per thread).

e Avoiding the tree walk in an “inner radius”; inside a given inner radius, we avoid evaluating nodes and
immediately sum up, with direct summation, all the particles of nodes that are encompassed within that
radius. That is feasible thanks to the memory arrangement of the tree nodes and the indexed traversal
already implemented in OpenGADGET.

As a first trial, we opted not to keep the particle structures close in memory. The actual loop that updates
particles’ force value gets through the list of active particles and not the list of particles (note: we remind the
reader that the particles are assigned with individual time-steps within a hierarchy of power-of-two decomposi-
tion of the timeline. Particles that are subject to more intense accelerations are integrated more often. Hence,
at every code step, only a subset of particles is to be updated). Hence, we opted for

e traversing the list of active particles, propagating the information through the hierarchy of tree nodes so
that every node knows how many active particles it contains;

e individuating the target nodes, i.e. the group of particles that will be treated collectively, following the
criteria explained above;

e partitioning the list of active particles so that the active particles that belong to the same target node are
subsequent in the list, which is a crucial step. After that, the loop which offloads the new routine for the
modified Barnes & Hut could just assign subsequent active particles to threads in the same warp.

Most of the code is already written at the time of this writing; we estimate that we will be able to run the
first test by September 2024.

Page 11 of 38

3 PLUTO

3.1 Introduction

PLUTO (https://plutocode.ph.unito.it) is a finite volume grid code solving hyperbolic and parabolic
conservation laws on a static grid or adaptive grid. The code is mainly intended for fluid and plasma physics
application in an astrophysical context, with a special attention high-energy astrophysical phenomena.

Within the SPACE proposal, only the static grid version of the code is being upgraded to GPU leaving
Adaptive Mesh Refinement (AMR) as a future task. The newly developed GPU version (gPLUTO) shares
the same underlying philosophy of its predecessor (PLUTO) and a high-level description of the code and the
main algorithms may be found in §3 of D1.2. The new exa-scale version of the code (gPLUTO) with full
support for GPU, and currently under development within the SPACE CoE, is available as a GIT repository at
https://gitlab.com/PLUTO-code/gPLUTO.

3.2 CI/CD implementation

The GPU porting of the code started with a simplified mini-app (~ 1,000 lines), entirely rewritten from scratch
while retaining the original code structure and subsequently adapted and extended for optimal exploitation and
integration with OpenACC programming model. The code has grown ever since and it counted - at the end of
the first year of the project - approximately ~ 40, 000 lines, 70% of which have been completely rewritten (only
I/O retains its original structure).

gPLUTO is being developed by a restricted number of contributors addressing different and specific activities.
While activities may be interchanged within this restricted group, they belong to either one of these tasks: i)
GPU kernel and module implementation & optimisation, ii) numerical benchmark porting and comparison, iii)
readability, code quality improvements and general maintenance. More closely:

e Task i) focuses on porting modules from the previous CPU version (PLUTO) to the new version (gPLUTO).
During this task we also have the opportunity to undertake a revision process for an almost 20 years old
code, by removing unused or useless algorithms, increase user-friendliness, enhance parallel performance.

e Task ii) is essential in order to ensure that previous results can be faithfully reproduced. This is part of
the quality assurance process and it is described later.

e Task iii) ensures overall consistency and coherence in terms of code syntax (indentation, comments, C++
naming convention, array allocation, macro employment, and so forth.).

GitLab is our chosen continuous integration application, and the repository may be found at https://
gitlab.com/PLUTO-code/gPLUTO0. Changes are committed several times a week, coordinated by an almost day
to day interaction between all the developers, in order to avoid unwanted concurrent operations on the same
branch or to simply inform others about recent bug fixes or kernel modifications. Modifications achieved in a few
days (or less) are done directly on the main branch while more demanding efforts with specific feature require
separate branch. Major changes that can affect more than one module or significantly compromise backward
compatibility, however, are first discussed and brought to the attention of the main code developer.

Changes committed to the main branch are successfully validated only after an extensive suite of numerical
benchmarks passes without errors. This activity - which has also been used in the CPU version of the code
for more then 15 years - is automated by a Python script which compiles and runs different test problems and
check that newly produced log files match the fiducial ones, previously produced by the previous CPU code
version (PLUTO). Log files contain information like the Mach number, maximum / minimum value of primitive
quantities, time step, and so forth, that are sensitive to arithmetic precision. Failure in replicating a fiducial log
file demands a more accurate debug activity that can last from just a few hours to even a week (depending on the
case). When the differences may - beyond any reasonable doubt - be ascribed to accumulated machine-precision
errors produced by the different compilers (e.g. gcc vs g++ vs nvc or nvc_acc) or a different operation order
due to the optimised kernel implementation, the corresponding reference log file is replaced with the newer one.
This typically occurs for the relativistic fluid modules where the number of operation counts, including also
square roots and root-finder algorithms, is larger. Similarly, problems with chaotic behaviour (e.g. turbulence,
strongly unstable systems) lead to similar problems.

Notice that for every test problems, we employ several configurations based on different combination of
algorithms; for each configuration, we further adopt alternative builds (that is, using different compilers, number

This document is Public (PU)
Page 12 of 38 and was produced under SPACE project EU GA 101093441

https://plutocode.ph.unito.it
https://gitlab.com/PLUTO-code/gPLUTO
https://gitlab.com/PLUTO-code/gPLUTO
https://gitlab.com/PLUTO-code/gPLUTO

D1.3 — CODE RELEASE (ALPHA)

of processors, targeting either CPU / GPU) can be arbitrary defined, in order to check (and enhance) portability.
At present, this suite includes 33 tests with several configurations and serial / parallel builds, for a total of
~ 320 test cases. Finally, in order to avoid architecture-induced log discrepancy, tests are run on a dedicated
workstation equipped with 2 CPUs Intel Xeon 26-Core 5320 2.2 Ghz and 2 NVIDIA RTX A4500 graphics cards.

3.3 Running on EuroHPC JU Clusters

At the time of writing this document, the code has been compiled and can run on several EuroHPC JU
clusters. We recently compiled, executed, and conducted scaling tests (Fig. 3) on both Leonardo Booster and
Leonardo Data Centric partitions. Additionally, we have successfully compiled and ran the code on Karolina
(compute nodes with GPU accelerators) and on the CPU nodes of LUMI-C. Moreover, our proposal for EuroHPC
Development Access Call was accepted for all of the requested HPC clusters. We successfully ran on VEGA
CPU and GPU partitions. Currently, we are working on the access procedures for MeluXina (CPU and GPU
partitions) and Discoverer (CPU partition), and we are awaiting contact from MareNostrum for access to both
its CPU and GPU partitions.

3.4 GPU porting and Kernel Optimisations

At the moment of this writing, five physics modules have been correctly ported to GPU using Cartesian coor-
dinates: equations of compressible Hydrodynamics (HD), Magnetohydrodynamics (MHD), Special Relativistic
Hydrodynamics (SRHD), Special Relativistic MHD (SRMHD) under ideal condition, that is, infinite conductiv-
ity and Resistive Relativistic MHD (ResRMHD). Notice that while SRMHD and ResRMHD partially overlap,
they count a different number of conservation laws to be solved (the latter evolves the electric field while the
former does not) and cannot be unified. Likewise, we also successfully implemented and ported to GPU: i)
all Runge-Kutta time stepping schemes (from 1%t to 4th-order), ii) finite-volume reconstruction methods (e.g.,
linear, Weighted Essentially Non Oscillatory (WENO), Parabolic, Monotonicity Preserving (MP) and iii) most
(= 80%) of the available Riemann solvers. For a given physics module, time stepping, reconstruction and
Riemann solvers can be combined quite arbitrarily, depending on the user’s requirements (e.g. more diffusive
solvers will likely be more robust in handling problems with sharp gradients).

At first approximation, the computational intensive part of the code are all performed by the GPUs while
the CPUs manage the overall initialization process and handle I/O operations. Kernels have been restructured
by reorganising previous one-dimensional functions (called several times by sweeping direction) into fully three-
dimensional kernels performing the actual computation in one single call per direction. Complex loops with
extensive computations have often been split into two or more parts to facilitate GPU porting, rather than
for performance optimisation. Additionally, the structure of the main arrays has been modified to promote
coalesced memory access on accelerated kernels: Boundary (K1), Reconstruct (K2), Riemann Solver (K3),
Right Hand Side (K4), Constrained Transport Update (K5) (described below and in Fig. 3).

Optimisation actions on these Kernels are discussed below while additional information may be also be found
in the Deliverable D1.el (Review EIC Actions).

3.4.1 Boundary

The Boundary () function handles nearly all inter-process communication by setting both internal (that is, inter-
processor) and physical boundary conditions on all of the sides of the computational domain, by filling ghost
zones for both cell-centered and face-centered data arrays. This routine is fundamental as it handles nearly all
inter-process communications and is invoked one time per Runge-Kutta Stage (e.g., 3 times for a 3"-order time
stepping.

The type of boundary condition at the leftmost or rightmost side of a given grid is specified by the integers
grid[dir] .1lbound or grid[dir].rbound, respectively. If this value is non-zero, it indicates that the local
processor borders a physical boundary. If the value is zero (indicating an internal boundary), two neighbouring
processors sharing the same side fill ghost zones by exchanging data values. This process is repeated for each
dimension and applies to both cell-centered and staggered data arrays.

Currently, our communication routines have been tested in the synchronous (blocking) implementation using
MPT and the NVIDIA Collective Communications Library (NCCL). Fig. 4 reveals the current performance of
the code on a weak scaling test up to 256 nodes (1 node = 4 GPUs or 32 cores when running on CPUs) on
Leonardo.

Page 13 of 38

3.4 GPU porting and Kernel Optimisations

/ c2p()

U—-V

\

VSR i
14*5 Z—-§

K2

vEi, vE F9
+5° 1t3 145

K3

AdvanceStep()
P
Reconstruct()
~~
Nt
K1 _3"
Boundary() & RiemanFlux()
a
=)
RightHandSide()

K4

\

Uttt =ur — L5, [F@.dS,+ AtS

CT Update() pn+l _ At =
K pdateC) BY —Bj;—A—SdéE-dl/
\

Figure 3: Diagram of the Reconstruct-solve-average (RSA) strategy. The kernels are: Boundary (K1), Recon-
struct (K2), RiemanFlux (K3), RightHandSide (K4) and CT_Update (K5)

B
~H— 8-
0.8 ‘g“x- N —E—
5
2 06 Y
T3}
=
=
E 0.4
0.2 —=— GPUs (nccel)
| | —=— GPUs (mpi)
—=— CPUs (mpi)
(} | | Ll .
10" 10! 10°
Nodes

Figure 4: Weak scaling test on Leonardo running the 3D MHD Orszag-Tang problem. Here 1 node equals 4
GPUs (for GPU runs) or 32 cores (for CPU runs).

We are currently exploring the use of non-blocking MPI calls and the "async” clause in kernels to exploit
concurrency, aiming for improved performance and scalability.

3.4.2 Reconstruct

The Reconstruct() function calculates the left / right primitive states at zone interfaces using one among
several spatial reconstruction methods and it determines the scheme spatial accuracy and it has been ported to
GPU using standard #pragma acc parallel loop directives from the OpenACC programming model. At each
RK stage, this function is executed once per dimension (therefore 3 times for a 3D problem using a third-order
RK method) using a user-defined reconstruction method, selected at compilation time. The reconstruction

This document is Public (PU)

Page 14 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

is typically based on piecewise polynomial interpolation subject to monotonicity constraints in order to avoid
the Gibbs phenomena in the presence of discontinuities or steep gradients. At the time of this writing we
have successfully ported: Linear, Parabolic, WENO reconstructions of 3" and 5*"-order and the 5'"-order MP
scheme.

In alternative to primitive variables, characteristic variables (i.e., obtained by projecting primitive variables
onto the eigenvectors of the underlying equations) may also be employed at the cost of substantially increasing
the operation count. These methods are essentially one-dimensional and employ information from adjacent
zones. While the code offers different reconstruction methods- such as, Linear, Piecewise Parabolic, WENO,
MP algorithm, we select linear (and later on fifth-order WENO and MP reconstruction) for optimisation (this
is one of the most frequently used options).

In this routine, as in many others, the strategy has been to divide computations into several simple and
efficient loops. This function consists of two separate kernels that operates on the whole active domain. These
loops are designed to maximise the chances of coalesced memory access, by ordering the loop indices so that
the inner loop index matches the fastest-changing index of the array within the kernel, whenever possible.

3.4.3 Riemann Solver

The RiemannFlux () function represents the most complex single kernel and computationally costly section of
the code. This function computes the flux function at a zone interface given the input L/R states previously
obtained during the reconstruction kernel. At the time of this writing, several Riemann solvers have been
ported including: the Roe solver for 3/5 modules; the Harten-Lax-van Leer (HLL) for 5 / 5 modules, the Lax-
Friedriechs solver (for 5 modules) the Harten-Lax-van Leer contact (HLLC) Riemann solver (for 4/5 modules);
the Harten-Lax-van Leer discontinuity (HLLD) Riemann solver (for 2/5 modules) and the GFORCE solver (for
4/5 modules). Other solver includes the two-shock Riemann solver (for the HD module) and the Maxwell-
Harten-Lax-van Leer contact (MHLLC) Riemann solver for the ResRMHD equations. This routine comprises
a single kernel that could not be split into separate parts and involves numerous arrays and variables, resulting
in substantial data movement between different levels of GPU memory affecting performance badly. The
employment of C++ templated functions ensure that all variables are known at compile time, allowing them to
reside in registers rather than main memory, thus optimising performance. Note that this routine also collects
information necessary to the constrained transport update.

As for the previous kernel, acceleration has been achieved by means of standard #pragma acc parallel
loop directives from the OpenACC programming model.

3.4.4 Right Hand Side

The RightHandSide () function evaluates the right hand side contribution for the conservative variable update
and it is central to the computation process. It is invoked three times (once per direction) for each of the
Runge-Kutta stages.

As for Reconstruct (), this function consist of several simple loops and it has been accelerated through
standard OpenACC pragma directives. These loops are designed to maximise the chances of coalesced memory
access, by ordering the loop indices so that the inner loop index matches the fastest-changing index of the array
within the kernel, whenever possible. In the details, there are arrays that are overwritten for every direction so
that the fastest index always matches the direction itself but there are also arrays whose element ordering is
fixed (for example the main primitive and conservative variables arrays).

These 3D arrays contribute to the significantly different execution times for the routine across the three
directions, which is a primary concern.

3.4.5 Constrained transport update

The CT_Update() function constructs the right hand side operator for the staggered magnetic (and electric
when need) field components, in analogy with its cell-centered version (RightHandSide() function). Since
these components have different spatial location and domain of existence, the kernel has been optimised us-
ing three accelerated loops via #pragma acc parallel loop compiler directives. This kernel is intrinsically
multidimensional and cannot be reduced to a sequence of 1D operators. The function includes one kernel per
direction (3 therefore), along with an additional kernels that operate exclusively for the ResRMHD module,
ensuring control over the divergence of the electric field. Before the staggered update, information collected

Page 15 of 38

3.5 Alpha code release: Final remarks

during the Riemann solver calls will be brought together to evaluate stable and properly upwinded electric field
components at cell edges.

3.5 Alpha code release: Final remarks

With over than 50% of the physics modules ported from PLUTO to the HPC version, the new PLUTO is able
to run and arriving at good performances (Fig. 4) on NVIDIA GPUs HPC cluster. The alpha version of the
code is available at the previously indicated url, https://gitlab.com/PLUTO-code/gPLUTO and can as well be
accessed from the original PLUTO web site (https://plutocode.ph.unito.it). gPLUTO will be distributed
under the BSD 3-Clause License; users will be allowed to download directly gPLUTO from the GIT repository
and share comments/suggestions/feedback through the PLUTO user forum. However, external users upload to
local repository will not be allowed.

We finally point out that code porting is not over and several parts of it require further testing especially on
HPC cluster. The features directly related to the use of HPC resources that we aim to achieve by the end of the
project include a better scalability on MPI and NCCL and the implementation of OpenMP #pragma directives
to allow the use of the AMD GPUs cluster.

This document is Public (PU)
Page 16 of 38 and was produced under SPACE project EU GA 101093441

https://gitlab.com/PLUTO-code/gPLUTO
https://plutocode.ph.unito.it

D1.3 — CODE RELEASE (ALPHA)

4 BHAC

4.1 Introduction

BHAC is a multidimensional General Relativistic Magnetohydrodynamics (GRMHD) code that is mainly used
to study accretion flows onto compact objects. BHAC has been designed to solve the GRMHD equations in arbi-
trary (stationary) space-times/coordinates and exploits AMR techniques with an oct-tree block-based approach
provided by the MPI-AMRVAC framework (https://github.com/amrvac/amrvac). Originally designed to
study Black Hole (BH) accretion in ideal GRMHD, BHAC has been extended to incorporate nuclear equations
of state, neutrino leakage, charged and purely geodetic test particles, and non-black hole fully numerical metrics.
BHAC has been employed in a number of studies of accretion into supermassive black holes and other compact
objects. In addition, BHAC’s results, after a General-Relativistic Ray-Tracing (GRRT) post-processing, can
be used to compute synthetic observable images of BH shadows and the surrounding accretion flows. These
calculations are performed with the GRRT Black Hole Observations in Stationary Spacetimes (BHOSS) code.
The GRMHD simulation data produced by BHAC are used as an input for BHOSS to produce accretion flow
and BH shadow images. A high-level description of the code and the main algorithms can be found in §4 of the
deliverable D1.2.

4.2 CI/CD implementation

CI/CD, for BHAC, has been set up at the GitLab repository (https://code.it4i.cz/space_coe/bhac_mini_
app) provided by IT4I and the corresponding runner is installed on IT4l’s Karolina cluster. As mentioned
above, this is the repository where all development related to SPACE CoE takes place. After each commit,
a series of tests are performed, and only when all these tests are successfully passed, the commit is accepted.
Two applications that utilise all the basic routines of BHAC (e.g. computation of the fluxes, Riemann solvers,
evolution, reconstruction, conservative to primitive recovery etc.) have been implemented in the CI/CD scheme.
The first one is based on SRMHD and the second one incorporates GRMHD:

1. The former is the 1D shocktube benchmark test, which is passed when i) BHAC is compiled and the
executable specific to the shocktube application is produced, and ii) a stable and non-crashing simulation runs
for several iterations.

2. The latter is the magnetised spherical accretion onto a Schwarzschild BH, a static solution of GRMHD,
that is passed when i) BHAC is compiled and the executable specific to the magnetised spherical accretion
application is produced, ii) a stable and noncrashing simulation runs for several iterations, and iii) the Lo-norm
of the difference between the profile of the rest-mass density at the final time and ¢ = 0 (which is the exact
solution) is less than a small number ¢, where € = 107°.

BHAC is publicly available at the GitLab repository (https://gitlab.itp.uni-frankfurt.de/BHAC-release/
bhac). Detailed documentation and directions on how to use the code are available at https://bhac.science.
The development within the SPACE CoE happens on different branches of the GitLab repository (https:
//code.it4i.cz/space_coe/bhac_mini_app) hosted by IT4I, where CI/CD has been also implemented.

4.3 Running on EuroHPC JU clusters

To date, BHAC has been compiled and run on the CPU partitions of the EuroHPC JU clusters Karolina,
Leonardo DCGP, LUMI-C, and Vega. The benchmark problems (1D shocktube and 2D magnetised spherical
accretion onto a Schwarzschild BH) that were run on these machines gave as expected similar results. Also,
the strong (see Fig. 5) and weak (see Fig. 6) scaling performance of BHAC on Leonardo DCGP and LUMI-C
shows similar behaviour up to roughly 7000 and 5000 cores, respectively. Strong scaling tests on Karolina can
be found in deliverable D2.1. Compilation on the rest of the EuroHPC JU clusters (MeluXina, MareNostrum
and Discoverer) is currently ongoing.

Page 17 of 38

https://github.com/amrvac/amrvac
https://code.it4i.cz/space_coe/bhac_mini_app
https://code.it4i.cz/space_coe/bhac_mini_app
https://gitlab.itp.uni-frankfurt.de/BHAC-release/bhac
https://gitlab.itp.uni-frankfurt.de/BHAC-release/bhac
https://bhac.science
https://code.it4i.cz/space_coe/bhac_mini_app
https://code.it4i.cz/space_coe/bhac_mini_app

4.3 Running on EuroHPC JU clusters

——- ideal Leonardo DCGP P P
60 1 —=- ideal LUMI-C /,’ /’
—— Leonardo DCGP el ad
7 7’
—&— LUMI-C 4 .
50 i 4 7’
o
3
9 401
o
n
?
v 304
©
£
o
< 20
10
O -

0 2000 4000 6000 8000 10000 12000 14000 16000
number of cores

Figure 5: Strong scaling of BHAC on Leonardo DataCentric and LUMI-C.

1.0 1
0.8 A
9
c 0.6 1
Q
O
E
]
0.4 4
029 ——- ideal
Leonardo DCGP
—8— LUMI-C
OO T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000

number of cores

Figure 6: Weak scaling of BHAC on Leonardo DataCentric and LUMI-C.

Strong and weak scaling tests were performed on the EuroHPC JU supercomputers Leonardo DCGP @
CINECA and LUMI-C. Equipped with 1536 nodes with 112 cores each and 2048 nodes with 128 cores each,
respectively, Leonardo DCGP and LUMI-C are ideal machines for scaling up to tens of thousands of cores.
For the scaling the magnetised torus around a Kerr black hole described in D1.1 was used as a test case. The
resolution used for the tests is (1,0, ¢) = (1024, 448,1024) on Leonardo DCGP and (r, 6, ¢) = (1024,512,1024)
on LUMI-C resulting in a computational domain consisting of half a billion cells. The block based grid structure
of BHAC divides the computational domain to a specific number of blocks containing a given number of cells.

This document is Public (PU)
Page 18 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

BHAC requires that the number of blocks in a simulation is equal or greater than the number of cores used. Here
we allocate one block to each core used, increasing gradually the number of blocks covering the computational
domain. For the strong scaling this is done by decreasing the number of cells per block while keeping the total
number of cells constant and for the weak scaling by keeping the number of cells per block constant while
increasing the total number of cells. Strong scaling results are depicted in Fig. 5, BHAC scales good up to
roughly 4000 cores and then because of issues related to load imbalance parallel efficiency drops. The weak
scaling results are depicted in Fig. 6, the efficiency is above 98% up to roughly 7000 cores on Leonard DCGP
and above 94% up to roughly 4000 cores on LUMI-C.

4.4 GPU porting and Kernel Optimisations

Currently, two modules have been initially ported to GPU: the primitive reconstruction and Riemann solver.
Of course they need further testing and optimisation in order to be fully ported and to be able to function on
a single as well as multiple GPUs. Notice that all development happens on a uniform grid for the reason that
the MPI-AMRVAC framework that provides the AMR functionality to BHAC has not been ported to GPU—a
task that is outside of the scope of SPACE CoE.

4.4.1 Primitive reconstruction

The module responsible for the conservative to primitive inversion has been ported to GPU using OpenACC.
Only one of the three inversion strategies available in BHAC has been currently ported to GPU: the so-called
Entropy inversion method, which is ideal for treating highly magnetised regions. The porting of the other two
methods, i.e. 1DW and 2DW, will follow. Subsequently, the average or expected thread divergence due to
the iterative nature of the Newton-Raphson method should be measured and in case divergence is drastically
hindering performance, we should investigate methods to mitigate and improve performance, i.e. by CPU-side
prepossessing.

4.4.2 Riemann solver

The Rusanov flux, also known as the Total Variation Diminishing Lax-Friedrichs scheme (TVDLF), has been
ported to GPU using OpenACC. Next, the ported TVDLF solver will be optimized in order to increase the
parallelisation efficiency and reduce, if not eliminate, the CPU-GPU data transfer. The sources of inefficiency
are discovered by examining GPU traces obtained using NVIDIA Nsight Systems. As the code is in early stages
of porting, we mostly focus on progressively eliminating data transfers by creating device versions of global and
local data using OpenACC data directives. Also we focus on optimising initial ports of kernels which for various
reasons are not fully parallelised (running sequentially or in a single block fashion). This is usually caused by
compilers’ inability to rule out possible data race or falsely reporting one. Example of detection of such an
issue and performance gain resulting form its subsequent solving can be seen in Fig. 7. The optimisation of
such problem usually take a form of some code transformation and modification of OpenACC directive. In
this particular case even for small development dataset, the optimisation resulted in approx 116x speedup. As
of writing of this document, not all such issues were solved and therefore we cannot present any performance
results as they would be heavily skewed. The successful porting of the TVDLF solver will serve as a blueprint
for the porting of additional solvers like the HLL, HLLC, etc, available in BHAC’s infrastructure.

Page 19 of 38

4.4 GPU porting and Kernel Optimisations

18 » | 77 H818ms -

“+820ms “"4822ms ""”—*—Bw‘@%ms TT4g28ms 7D
+ CPU (80) a)

~ CUDA HW (0000:01:00.0 - NVIDIA

» 17.7% Memory !

conserven_38
Begins: 1.79831s |
=T Ends: 1.832865 (+24.543 ms)
NVTX grid: <e<1,1, 15>
ve [42.686 ms] block: <<< L, 122>
Launch Type: Regular
Static Shared Memory: 36 bytes
Dynamic Shared Memory: 0 bytes
Registers Per Thread: 72
Local Memory Per Thread: Obytes
Local Memory Total: 73,400,320 bytes

« Threads (11)

- |v| [640779] MPIRank 0 -

OpenACC o Shared Memeory executed: 16,384 hy'te:l
“| shared Memory Bank Size: 4 B
MPI Theoretical occupancy: 43.75 %

Launched from thread: 640779
Latency: «<12.040 ps
19.844 ms] Correlation ID: 53493

NVTX
18 [42.734 ms] |Stream. Stream 14

CUDA API

Profiler overhea

| [640800] cuda-EvtHandlr

» CPU(80) b)

= CUDA HW (0000:01:00.0 - NVIDIA

» 40.8% Memory Begins: 1.954765
Ends: 1.95506s (+297.600 ps)
grid: <<<166,1,1>>>

15 + | +9547ms +054.75ms 15 954.8083ms [ERCEETEUE +954.9ms

‘conserven_acc_601_gpu

block: <<<128, 1, 122>
NVTX Launch Type: Regular
Static Shared Memory: 0 bytes [
Dynamic Shared Memory: 0 bytes
~ Threads (11) Registers Per Thread: 50
Lecal Memory Per Thread: 0 bytes
* |V [654160] MPI Rank 0 + Local Memory Total: 73,400,320 bytes
Shared Memory executed: 32,768 bytes
OpenACC 7 Shared Memory Bank Size: 4 B
| Theoretical occupancy: 56.25 %
MPI Launched from thread: 654160
Latency: «49.280 ps
Correlation ID: 178538
Stream: Stream 14
NVTX
CuDA API | EBols0e oecocossemmRd

Figure 7: Example of Nsight Systems traces of a) performance hindering semi-sequential kernel and b) fully
parallel kernel. The problematic kernel can be easily identified by abnormally long runtime and subsequently
verified by looking at launch configuration. In this case, the performance increase is approx. 116-fold.

For both modules, we will also focus on optimizing data structures for better data locality on CPU (vectorization)
and GPU and optimize access pattern (loop order) for both CPU and GPU. In order to investigate the scalability
of the GPU ported modules, we should move to multiple GPUs. While intra-node communication can be solved
by direct GPU-to-GPU transfers, this is not always possible of inter-node communication. For early stages of
GPU porting, the inter-node communication will be handled using MPI. Therefore, the great deal of attention
has to be paid to data movement between CPU and GPU. The block structure of BHAC’s numerical grid
with overlapping ghost zones for communication will allow us to implement some communication-computation
overlap to hide the latency of GPU-CPU data migration for inter-node communication. At a more advanced
stage of the project we will try to use CUDA-aware MPI with GPU-CPU-NIC (Network Interface Controller)
data transfers to achieve higher multi-GPU processing efficiency.

This document is Public (PU)
Page 20 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

5 ChaNGa

5.1 Introduction

ChaNGa [3, 4, 1] is an N-body Smoothed Particle Magnetohydrodynamics (SPMHD) code which is used to study
a wide array of astrophysical systems. While the gravity and SPMHD algorithms are based on the Gasoline [5]
and pkdgrav [6] codes, the unique feature of ChaNGa is its incorporation of the Charm++ framework which
enables highly efficient parallel scaling. To achieve this, Charm++ employs overdecomposition, that is to divide
the work into many more work pieces than the number of available processors and let the Charm+-+ runtime
system load balance by appropriately assigning pieces to real processors. During runtime, Charm++ applies
dynamic load re-balancing strategies, to determine which work pieces should be migrated to new processors for
better load balance. As the central feature of ChaNGa is it’s tree-based gravity solver, the work pieces handled
by the Charm++4 framwork are vertical slices of the global tree, also known as tree pieces. The number of
tree pieces is directly correlated to the given overdecomposition chosen by the user. Charm++ also provides
support to execute CUDA kernels on the GPU asynchronously and to manage data transfers between the CPU
and GPU. A high-level description of the code, its main algorithms and kernels targeted for optimisation can
be found in §8 of Deliverable 1.2.

During this initial development period we have setup git repositories, started to implement a more rigorous
CI/CD, updated our general GPU implementation, and implemented a tree piece replication method to tackle
the scaling issues found during the performance analysis (D2.1). The details of these improvements are outlined
in the sections below.

5.2 CI/CD implementation

ChaNGa is publicly available on github (https://github.com/N-BodyShop/changa) and have been for some-
time. Commits to the public git are done through pull requests, which allow developers to review and discuss
changes before being merged into the main project. This means that large amount of work can be done on
separate branches and then merged into the head/public branch of ChaNGa (while still being publicly available
for review during the open pull request). MHD which have before been only accessible through private branch
is currently under a pull request to be reviewed and pushed into the public repository. The private MHD branch
is still in use in the development of a more rigorous CI/CD as explained in the CI/CD section (which will even-
tually be pull requested and committed to the public repository). Both the public and private MHD branches
have been mirrored to the IT4I GitLab (https://code.it4i.cz/it4i-robertw/changa) and the Hochstleis-
tungsrechenzentrum Stuttgart (HLRS) GitLab (https://codehub.hlrs.de/coes/space/changa/changa), to
provide a common access place for all the CoE codes. The public and private MHD branch are the development
branches relevant to the SPACE CoE project and the improvements we aim to accomplish.

The public repository of ChaNGa already includes a basic CI pipeline, that needs to be passed for changes
to be committed. This pipeline is configured to compile Charm++ and ChaNGa, followed by executing a
simple test to verify the time integration and gravity functionality. This can be seen in https://github.
com/N-BodyShop/changa/actions. However, this setup does not cover many of ChaNGa’s other modules,
such as hydrodynamics, star formation, feedback, magnetic fields, etc. To address this, we have prepared
a comprehensive suite of test cases to ensure that all physics modules work properly within ChaNGa. This
test suite is also beneficial for users of ChaNGa’s predecessor, Gasoline and for the development of numerical
schemes within both codes. Consequently, it is available on its own public Git repository (https://github.
com/robertwissing/testsuite), and will be included as a submodule in ChaNGa for additional CI. We will
continue to create additional test cases for this test suite to further improve our CI and enable users to easily
run a wide range of tests.

The extended CI/CD pipeline will consist of several stages and test cases. These tests were chosen to ensure
the integrity of all regular code modules:

e Compilation of Charm++ and ChaNGa, with different build configurations.

e Time integration and gravity solver

Hydrodynamics tests

Magneto-hydrodynamics tests

Cosmological tests

Page 21 of 38

https://github.com/N-BodyShop/changa
https://code.it4i.cz/it4i-robertw/changa
https://codehub.hlrs.de/coes/space/changa/changa
https://github.com/N-BodyShop/changa/actions
https://github.com/N-BodyShop/changa/actions
https://github.com/robertwissing/testsuite
https://github.com/robertwissing/testsuite

5.3 Running on EuroHPC JU clusters

e Star formation, cooling and feedback test

The initial conditions to each of these tests will be included with ChaNGa either in raw form or in setup scripts.
The log files of each test case (total energy, angular momentum, magnetic field strength, etc.) are checked so
that they reproduce the same result as previous versions of the code. The current pipeline uses public available
GitHub runners.

5.3 Running on EuroHPC JU clusters

ChaNGa has, so far, been compiled and benchmarked on the Karolina-CPU, LUMI-C and Leonardo-DCGP
clusters. In Fig. 8, we see the scaling of the single time step and the gravity module on Karolina, LUMI and
Leonardo, for a 25 Mpc cosmological simulation with 2 billion particles at high redshift. From the figure we
can see that there is loss of parallel efficiency at higher node counts for the single time step. This is because the
runtime of gravity becomes comparable to that of domain decomposition (Domain Decomposition (DD)) and
load balancing (Load Balancing (LB)). In a previous version of ChaNGa [1], an optimisation known as MetaL.B
was used to limit the overhead from DD and LB. This detects if there is an imbalance in the load of tree pieces
and only performs a DD and LB step if this is the case. However, the MetalLB optimisation is currently not
functioning properly in newest version, as such DD and LB is always performed at every step in the current
version of ChaNGa. From the figure we can see that the scaling single time step differ between clusters, which
comes down to different scaling in DD and LB. This is likely due to the difference in MPI and architecture
between the clusters. From past testing we know that Open MPI (Karolina+Leonardo) struggles in handling
the large number of messages that ChaNGa produces, therefore other MPI layers have been preferred (mostly
MVAPICH?2).

We have recently gotten access to MeluXina, VEGA, Discoverer and MareNostrum, and will begin porting
and benchmarking on these systems in the upcoming months.

5.4 GPU porting and Kernel Optimisations
5.4.1 Remote communication (Gravity and SPMHD)

During our performance analysis (D2.1), it became clear that ChaNGa suffers from communication imbalance
for highly clustered datasets involving all the main physics modules. We have tackled this issue by introducing
a tree piece replication method within the code. In this method, we replicate the information about the tree
nodes on multiple processors, which spreads out the communication load and ensures that no single processor
becomes overloaded with messages.

A rough version of tree replication was implemented in an older version of ChaNGa, which we have now
merged and updated to the newest version. This preliminary version already shows promise for the merger
case that we benchmarked in D2.1. This can be seen in Fig. 9, where tree piece replication significantly
improves the scaling, both for the overall timestep and the gravity+SPH step. We have also found that using
more communication threads than default can further improve the results. From the two plots we can see
that gravity+SPH scales better than the overall timesteps and this is due to some modules (star formation +
feedback) scaling less efficiently. The improvement of the two new optimisations can be seen in the projections
traces for the 64 node case (Fig. 10), where we see a large reduction in idle time between the local and remote
gravity calculation (colours and regions are same as in D2.1). Potentially with some more work and optimisation
to the tree replication, we can further decrease this idle time. At lower CPU count, the tree replication code
is slightly slower than the code without. We use an excessively high number of tree replications here (8), but
this could likely be much lower. We plan to implement a parameter to choose the number of replicas. When
the number of threads exceeds 8000, in this merger case, the problem size becomes a limiting factor due to
the reduced number of tree pieces assigned to each thread. This reduction hinders load balancing, which often
requires > 8 tree pieces per thread on average for good load balance. Although increasing the number of tree
pieces might seem like a solution, it leads to smaller number of particles per tree piece, which increases overhead,
which then becomes another limiting factor. We will prepare a larger merger case simulation and test scaling
to higher node count.

There is still some cleanup and generalization that needs to be done for the tree-replication code. For
example, right now the number of replicas is hardwired to be 8 and some functions need to be refactored and
generalized. In addition, more testing should be done to figure out potential limitation or breaking points of
the method.

This document is Public (PU)
Page 22 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

108 4

Speedup

10° 4

100 4

Speedup

10° 4

Speedup vs Nodes

Parallel Efficiency (scaled to n=32) vs Nodes

—o— |deal 10 g . *
—a— Karolina
—&— Lumi
—&— Leonardo
0.8 1
=
4
m
A
o 0.6
=
=
o
=
=
w
T 04
©
&£
024 —8— |deal
=& Karolina
== |umi
=& |leonardo
T T T T T D.G T T T T T
32 54 128 256 512 32 64 128 256 512
Modes Modes
Speedup vs Nodes Parallel Efficiency (scaled to n=32) vs Nodes
—&— |deal 10 4 .]
—&— Karolina
—&— Lumi
—&— Leonardo
0.8 1
k=]
a4
m
b
= 0.6
=
=
A
o
=
i
T 044
=
£
024 —8— |deal
—&— Karolina
== |umi
=& |leonardo
T T T T T 0.0 T T T T T
32 &4 128 256 512 32 &4 128 256 512
Modes Modes

Figure 8: The top figure shows the scaling for a single time step, while the bottom show the scaling of only
the gravity module. These simulations was performed on the Karolina-CPU, LUMI-C, and Leonardo-DCGP
partitions using a cosmological box containing 2 billion particles within a 25 Mpc volume, using gravity only.
The speedup curves have been normalized by the results from the 32-node run for each cluster. When the
runtime of gravity becomes comparable to that of domain decomposition (DD) and load balancing (LB), the
parallel efficiency declines. This is because DD and LB does not scale as well as gravity. The better single
time step scaling seen in LUMI-C is due to better scaling of DD and LB (likely due to differences in MPI and
architecture). We should note that this is without the use of the Metal.B optimisation used in [1](which limits
the overhead by DD and LB), as this is currently not functioning properly in current version of ChaNGa/Charm.

Page 23 of 38

5.4 GPU porting and Kernel Optimisations

9.01 ~@- TR 16 Comm 9.0 ~@- TR 16 Comm
3 e $ e

7.57-’-nQTRECcmm 75 @ no TR 8 Comm
a 6.0 a 6.0
> =}
® ?
g_ 4.51 8. 4.5
w %))

3.0 / 3.0

15] 1.5

v
2000 4000 6000 8000 2000 4000 6000 8000
Total Threads Total Threads

Figure 9: Scaling plots of the galaxy merger simulations. Left shows single time step scaling (can be compared
with Deliverable D2.1 plot) and right show gravity+SPH module scaling. We can see much better scaling with
the addition of tree piece replication and more communication threads.

Not Running .
Idle

Local Gravity .

Density SPH

Gradients SPH
Remote Gravity

Figure 10: Projections traces of single time step of the merger simulation, where y axis shows all the active
processors and x axis the time. The colors represent what each processor is working on or if it’s idle (see legend
to right). The top figure shows the result from the old version and the bottom shows the result from the version
with tree replication and increased communication threads. We can see a massive reduction in the idle time
between the local gravity calculation and the start of the remote gravity calculation. For more details about
the regions see Deliverable D2.1

5.4.2 GPU related activities

The goal is to port several modules of the ChaNGa code to the GPU. The first modules which we will aim to
port is the radiative cooling and SPMHD modules of the code. GPU porting is carried out in close collaboration
with Spencer Wallace and Tom Quinn at the University of Washington, both co-developers of the ChaNGa code.

Before porting the cooling and SPMHD module, some work needed to be done on the general GPU imple-
mentation in ChaNGa. Previously, workRequest functions were used to allow ChaNGa to asynchronously
interact with the GPU. These have become deprecated and do not function with the Charm++ performance
tracing programme “Projections”, so we have decided to remove these functions from the code. Instead, we will
directly handle GPU requests in ChaNGa by submitting memory transfer/allocation requests, kernel launches,
and callback assignments to CUDA streams. Each treepiece is assigned a CUDA stream in a round-robin fash-
ion, and the number of available streams can now be controlled via a runtime parameter. This have all been
implemented and pushed to the public git.

Additionally, while testing this new implementation in ChaNGa, we identified an issue during multi time step-

This document is Public (PU)
Page 24 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

ping runs when only a few particles are on the smaller time steps. For these smaller timesteps, running on the
GPU is slower than on the CPU due to the additional overhead. To address this, a runtime parameter has been
added to switch to a tree walk on the CPU whenever the number of active particles falls below a certain threshold.

While both the gravity and cosmological boundary modules have been ported to GPU prior to the SPACE
initiative, we want to continue to port the remaining computationally heavy modules (SPMHD, radiative cool-
ing, feedback) to the GPU. Previously, we have noted that we would start porting the SPMHD module first,
though we have decided to begin with the porting of the radiative cooling module instead. While the SPMHD
module is in many situations the second most computationally heavy module, the radiative cooling can become
the second most computationally heavy module in some conditions. This is because the radiative cooling is a
semi-implicit module and that large integration times are needed when the cooling timestep is much smaller
than the dynamical timestep. The radiative cooling is also easier to port to the GPU than the SPMHD. For
the porting of the SPMHD module, we are currently discussing strategies of implementation. We will likely
either perform the tree-walk on CPU and produce an interaction list (as has been done for other SPH codes,
such as SPH-EXA), which is sent to the GPU for calculation. Alternatively, we will attempt to perform both
the local tree-walk (neighbour finding) and the calculation on the GPU (similar to what is done for our gravity
module).

Page 25 of 38

6 FIL

6.1 Introduction

FIL, like BHAC, is a multidimensional GRMHD code. FIL is different from BHAC in the sense that it has been
designed to solve the GRMHD equations in dynamical spacetimes. This allows FIL to simulate the maelstrom
that are neutron star collisions. Whilst there is a greater computational cost for a full GRMHD code, there is
a greater generality to the problems FIL can be applied to. FIL is a state of the art numerical relativity code;
it uses fourth-order finite difference schemes to provide highly accurate simulations. FIL leverages the Einstein
Toolkit (ET) which provides the infrastructure to enable numerical relativity simulations. FIL provides the
computational modules, whereas the ET provides the AMR grid and memory management that FIL uses via
the Carpet module. A new version of the Carpet module, CarpetX has recently been released, based on the
AMReX library. CarpetX is compatible with CUDA and OpenACC and is designed for exascale computing.
Therefore, to accelerate and improve FIL’s scaling, a large part of our work will involve replacing Carpet with
CarpetX. We can then focus on accelerating the computational modules in FIL using GPUs and optimising
them. This is the general outline of the planned work. For further information on FIL, a high-level description
of the code, and the main algorithm, please refer to §6 of the deliverable D1.2.

6.2 CI/CD implementation

The ET is publicly available, well documented, and well maintained (https://github.com/EinsteinToolkit).
To operate FIL, the tutorials provided by the ET are sufficient. FIL is an upgraded version of the ET base fluid
and spacetime computation modules. FIL is designed to be as similar as possible in user experience. FIL has
to be made public by the end of 2025 and so work has been underway to improve the documentation and bring
FIL inline with ET standards. The development within the SPACE CoE happens on different branches in the
GitLab repository (https://code.it4i.cz/space_coe/fil) hosted by IT4IL

CI/CD, for FIL, has been implemented at the GitLab repository (https://code.it4i.cz/space_coe/fil)
provided by IT4I and the corresponding runner is setup on I'T4I’s Karolina cluster. After each commit, a series of
tests are performed to make sure the code functions as expected. The first test is a compilation test. Compiling
FIL and the ET at the same time can take up to 30 minutes and so a pre-compiled version of the ET is stored
on Karolina, and FIL is connected to it using symbolic links. When the runner pulls the modified version of
FIL, it compiles FIL with the previously compiled ET. The second test is a simple print test to make sure the
executable is functional. Finally, for the last test, FIL is used to solve the Tolman—Oppenheimer—Volkoff (TOV)
equation, which is the equation for GRMHD model of a star. This is a robust and computationally challenging
test and it requires the use of all the kernels that we have identified for optimisation. The numerical solution
for TOV equation is validated with respect to an analytical solution. Due to numerical errors, there will be
some oscillations around the analytical solution but this can be taken into account with a tolerance.

6.3 Running on EuroHPC JU clusters

To date, FIL has been compiled and run on the CPU partitions of the EuroHPC JU clusters Karolina and
Leonardo. Compilation on the rest of the EuroHPC JU clusters is currently ongoing. The scaling tests for FIL
are almost complete and will be presented in the next deliverable. FIL has also been compiled and run on the
HLRS HAWK cluster and the SuperMUC cluster where we have recently performed scaling tests. In Fig. 11,
we can see that FIL scales well up to 32000 cores for a unigrid setup. For the AMR scaling test, FIL preforms
worse and scales poorly after 2560 cores.

6.4 GPU porting and Kernel Optimisations

We have planned to focus our acceleration efforts on BHAC until September. This will be done in collaboration
with our partners at IT4l. The skills we will learn porting BHAC to GPUs using OpenACC can then be
transferred to FIL. Once we have gained experience, we expect our work rate to increase significantly. BHAC
was chosen to be the first code we work on as it is simpler to port as it being an isolated code whereas FIL is
coupled strongly to the ET.

However, this does not mean that work on FIL will stop. We are, in the meantime, training our FORTH
partners how to operate and understand FIL. The material that we produce in this training will be the bases for
our training of the wider astrophysics community that we will produce as part of our training deliverables. Our

This document is Public (PU)
Page 26 of 38 and was produced under SPACE project EU GA 101093441

https://github.com/EinsteinToolkit
https://code.it4i.cz/space_coe/fil
https://code.it4i.cz/space_coe/fil

D1.3 — CODE RELEASE (ALPHA)

5.0 4.0
. 1.0 - 1.0
4.5
3.5
4.0 0.8 0.8
FIL Unigrid 3.0

&
o

FIL AMR

)
g
= (SuperMUC) A - Z
g 3.0 0.6 95k (HAWK) 0.6 g
: 2.5} &
e~ 104 2.0f 0.4
£ o0}
L5t 02 O 0.2
—e— FIL —e— FIL
iob ¢ ideal 1o &« - ideal
2048 4006 8102 16384 32768 640 1280 2560 5120 Y
Number of Cores Number of Cores

Figure 11: Scaling test of FIL AMR and Unigrid performance on HAWK https://www.cardiff.ac.uk/
advanced-research-computing/about-us/our-supercomputers. In this picture dashed lines represent ideal
scaling, solid lines are the current performances. Red lines are efficiency, blue lines normalised speedup

FORTH partners will profile and start the process of porting FIL to GPUs whilst the scientific partners work on
BHAC. We will also be attending the ET conference in July. The focus of the conference will be learning what
changes need to be made to codes to make them compatible with CarpetX (released in November 2023) which
is the primary requirement for porting our code to GPUs. We are also planning on attending two NVIDIA
Hackathons - one each for BHAC and FIL.

We have already collected and distributed all the reading material our FORTH partners need to conceptually
understand FIL. We have set up good communication channels using the message hosting website FIL for
seamless communication. We have created Jupyter notebooks on how to compile and run the tests that we will
be using during our performance optimisations, namely head-on collision/TOV star simulations. We have sat
with and worked with our FORTH partners whilst they go through the Jupyter notebooks as well as setting up
bi-weekly training meetings.

6.4.1 Optimisation on Kernel 1: Carpet

The first kernel that we will start with is Carpet - we will work out how to make FIL compatible with CarpetX.
As previously mentioned, CarpetX is based on the AMReX library and is therefore capable of working with
CUDA and OpenACC as well as being optimised for exascale computing. Carpet must be replaced with CarpetX
as having to transfer data constantly back and forth between GPU and CPU will limit any performance gains
obtained using GPUs. Load balancing issues within Carpet were also identified as the main source of inefficacy
within FIL and replacing Carpet should solve this issue. In other words, if we port FIL, the computational
module, to GPU without switching to CarpetX, there will be constant data transfer between the processing
units at every time step which will kill performance even on unigrid. We will gain a better understanding of
the changes that need to be made to FIL to make it compatible with CarpetX in ET conference in July. We
will be collaboratively work with the code developers of CarpetX in person.

CarpetX will act as the base of our mini app. Since FIL is coupled strongly to the ET, it requires a lot
of the functionality that the ET provides. Therefore, we will start with CarpetX, work to make FILs modules
compatible with CarpetX, and optimise them for exascale computing and accelerate them.

6.4.2 Optimisation on Kernel 2: Driver evaluate MHD RHS

During the profiling outlined in the deliverable D1.2, the driver evaluate MHD RHS kernel was found to have
overall good OpenMP performance. Performance was throttled mainly by the bottlenecks in Carpet. To
improve the OpenMP performance, we are going to use OpenMP region aggregation. As kernel 2 is a purely
computational kernel, it has been identified as a good target for vectorisation and GPU offloading.

Page 27 of 38

https://www.cardiff.ac.uk/advanced-research-computing/about-us/our-supercomputers
https://www.cardiff.ac.uk/advanced-research-computing/about-us/our-supercomputers

7 iPic3D

7.1 Introduction

Implicit Particle-in-cell 3D (iPic3D) [7] is a Particle-in-Cell (PIC) code developed to study plasma dynamics at
the kinetic scale. In this open-source code (https://github.com/CmPA/iPic3D), the individual (macro)particles
of a plasma are evolved in a Lagrangian framework whereas the moments (electric current, density, etc) and
the electric and magnetic fields are tracked on an Eulerian grid. It solves the Maxwell-Vlasov equation self-
consistently using the implicit moment method. The three main kernels of iPic3D are (a) Particle Mover, (b)
Moment Gatherer, and (c) Field Solver. A high-level description of these modules (and the code) can be found
in Section 7 of Deliverable D1.2.

Owing to the “implicitness” of the method involved, unresolved scales do not result in any numerical insta-
bilities, as opposed to explicit PIC methods, where one is restricted to the Courant-Friedrich-Lewy constraint.
This allows us to choose time step sizes and grid sizes that can be 10 — 100 larger than those used in traditional
PIC codes.

The developments for iPic3D, within the framework of the SPACE CoE, are committed and pushed to https:
//code.itdi.cz/space_coe/iPic3D, hosted by IT4l and https://github.com/CmPA/iPic3D. Any changes
to the IT4I GitLab repository is mirrored to https://codehub.hlrs.de/coes/space/ipic3d/ipic3d.

7.2 CI/CD implementation

The SPACE_CPU branch in https://code.it4i.cz/space_coe/iPic3D has CI/CD implemented. We consider
a two-dimensional case of a thermal plasma, with a resolution of 112 x 56 and 20 particles per cell, which is
evolved for 10 time cycles on 7 x 4 MPI tasks (cores). The input file corresponding to this test can be found
in iPic3D — inputfiles — CI_test.inp. In order to avoid using excessive computational resources, we
have opted for a relatively small-sized problem for the CI/CD tests. The results generated during this run is
then tested against a reference data set, with the exact same simulation parameters, the data of which can be
found in iPic3D — data — ci_ref. The bash scripts for these commands can be found in the iPic3D —
scripts.

Any commits to the SPACE_CPU branch triggers a test of compilation, run, and comparison of resulting
data with a reference data set (Fig. 12). We compare the difference in the electric and magnetic field across
the two-dimensions: values of 0 in the differences of these quantities indicate that the latest commit yields
the exact same results as that of the reference dataset (see lines 603 - 608 in Fig. 12). If these values are
significantly greater than the machine precision, this would indicate incorrect results. As we are computing
the error incurred in the various physical quantities individually, it would be straightforward to check for any
mismatch of values corresponding to any of the physical parameters. The three modules in iPic3D, particle
mover, moment gatherer, and field solver are inherently coupled, and as such, all three modules are tested for
the CI test. Furthermore, the initialisation of a problem and writing of the resulting data set to HDF5 files
are also implicitly tested. Overall, the entire fundamental code base is tested during a CI test and failure in
any one of these modules would result in a failed test. We note that the CI pipeline can be run by the user on
demand to test the recent developments at any point in time.

In the near future, we aim to automate strong and weak scaling tests along with the test for verification of
correctness of the code to gain a better understanding of the code performance in terms of the speedup achieved.
We are working on developing a similar CI test for the GPU_OpenACC branch. The finalised version of this will
be implemented following the ongoing optimisations of the particle mover module.

7.3 Running on EuroHPC JU Clusters

We have successfully compiled and run iPic3D on Leonardo DCGP, Leonardo Booster (with the particle mover
module running on the GPU), LUMI-C, and Karolina CPU. We have applied for EuroHPC JU Call for Proposals
for Development Access to run iPic3D on MareNostrum5 GPP, MeluXina CPU, Discoverer, and VEGA CPU.
In the next deliverable, we will present strong and weak scaling tests on these aforementioned clusters.

Additionally, iPic3D has been successfully compiled and ran on NVIDIA Grace (ARM Neoverse v2) with
nvhpc compiler by Elisabetta Boella (E4) who is also directly involved in facilitating GPU offloading of iPic3D.
She is currently running tests to compare the performance on ARM architecture with that of x86_64.

This document is Public (PU)
Page 28 of 38 and was produced under SPACE project EU GA 101093441

https://github.com/CmPA/iPic3D
https://code.it4i.cz/space_coe/iPic3D
https://code.it4i.cz/space_coe/iPic3D
https://github.com/CmPA/iPic3D
https://codehub.hlrs.de/coes/space/ipic3d/ipic3d
https://code.it4i.cz/space_coe/iPic3D

D1.3 — CODE RELEASE (ALPHA)

= G Successfully installed hSpy-3.11.0 numpy-2.0.8

ce] A new release of pip available: 3.1 -= 24.1

Updated gitignore

(V1 Pic3D_mirror_gitlab created pipeline for commit 7b5d45 [y 1week ago, finished 17 hours ago

[notice]l To update, run: pip install --upgrade pip
Bx error:

By error:

st €02 jobs (1 minute 2 nds, queued for 584,738 seconds Bz error:
Ex error:
Pipeline Needs Jobs 2 Tests

Ey error:
Ez error:

build — test Complete Time Elapsed = 0:00:00.287778

@ build-job @ unit-test-job

Figure 12: Left: figure shows the basic test of the CI/CD pipeline that needs to be passed for the SPACE_CPU
branch. The “unit-test-job” carries out tests for the particle mover, moment gatherer, and field solver, in
addition to problem initialisation and writing data to files. Right: screenshot of the final stages of the CI test
- one can see that the errors in the electric and magnetic fields, compared to the reference solution are exactly
0, thereby indicating correct results of the latest commit in https://code.it4i.cz/space_coe/iPic3D.

7.4 GPU porting and Kernel Optimisations
7.4.1 GPU porting: Particle Mover

We have offloaded the particle mover module to GPU using OpenACC and we are now working on optimising
the performance of this module on GPU. The particle mover kernel contains #pragma acc parallel loop to
iterate over all the particles. This is the first module, of iPic3D, to be ported to GPUs within the framework
of SPACE CoE. We have simplified the electric and magnetic field arrays in a way that enables vectorisation.
Vectorisation of the field arrays, as opposed to using multiple pointers, avoids potential memory leaks and as
well as provides some speedup. The performance of the GPU code is being analysed with NVIDIA Nsight
Systems (https://developer.nvidia.com/nsight-systems) to identify scope for optimisation, analyse the
performance of the module under consideration, test for misaligned memory accesses, memory leaks, potential
race conditions, and necessary synchronisation breaks (see Fig. 13). We have noted several instances of data
movements to and from the host and the device and many page faults.

To test the performance of the GPU offloaded particle mover, we consider a simple test case where we
discretise the two-dimensional computational domain with 640 and 320 grid points along the X and Y directions,
respectively. We consider five different values for the number of particles per cell (with the rest of the parameters
being exactly the same as the one for the CI test), and we report the runtimes for the particle mover, with
and without GPU support, in Table 1. Let us clearly state that the runtimes for the particle mover, with GPU
support, includes the time needed for data transfers to the GPU and back to the CPU (as the moment gatherer
and field solver still run on the CPU). This is why we do not observe large speedups for the GPU offloaded
part. Whilst it is essential that the data transfer to and from the device, i.e., GPU is minimised, our current
implementation requires transfer of the relevant data to and from the device at every time step. This is due to
the implicit nature of iPic3D: the results yielded by the particle mover (on the device) have to be transferred
back to the host to compute the moments and the fields. The data transfer between the host and the device
will be the last stage of optimisation once all three modules have been ported to GPU. This test case was run
on a single node with 32 MPI tasks and with a single NVIDIA A100 GPU on Leonardo Booster.

Optimisation 1

As a first step towards optimising this kernel, we investigate asynchronous data transfer to hide the memory ac-
cess latency performance enhancements using cudaMemPrefetchAsync (Listing 1). We asynchronously prefetch
a range of managed memory on the device for the particle velocities and positions and the electric and magnetic
fields that are stored on the grid. Prefetching helps to manage data movement explicitly, ensuring that memory
is available on the right device at the time of usage without substantial overhead. In Table 1, we observe some
statistically significant improvement in performance whilst prefetching the memory only for relatively large test
cases (i.e., where the number of particles per cell are 80 x 80 and 90 x 90). We expect to obtain even larger
performance gains when we move to multi-GPU systems. As transferring large amounts of data to multiple
devices across different nodes can be time-consuming, we expect asynchronous prefetching to play a crucial

Page 29 of 38

https://code.it4i.cz/space_coe/iPic3D
https://developer.nvidia.com/nsight-systems

7.4 GPU porting and Kernel Optimisations

CPU GPU GPU
Particles per cell (Time elapsed in sec) (No Prefetching) (Prefetching)
p (Time elapsed in sec) | (Time elapsed in sec)
20 x 20 28 21 22
40 x 40 112 86 84
60 x 60 252 190 190
80 x 80 441 338 331
90 x 90 567 429 420

Table 1: Comparison of the computation cost, in terms of time elapsed in seconds, of the particle mover on
32 CPU cores (MPI parallelised) and on a single NVIDIA A100 GPU on Leonardo Booster for five different
configurations of particles per cell. It is to be noted that the time elapsed reported for the GPU runs also takes
into account the time needed for data transfer from the host to the device and vice versa. We expect significantly
higher speedups once we finish offloading the other two modules and the entire data remains exclusively on the
device for as long as possible.

role to achieve meaningful speedups. Code performance and scaling on multiple GPUs would be a subject of
consideration in the upcoming deliverables.

Optimisation 2

Based on the recent POP3 analysis conducted by Radim Vavrik (IT4I), we have identified a potential scope for
improvement in the particle mover module. The particle mover computes the velocities and positions of the
particles at any given time step once the electromagnetic fields have been computed. It may so happen that not
all particles end up in the correct MPI subdomain. In order to get the particles back to the correct subdomain,
this communication is done only with six neighbouring subdomains along the three spatial dimensions. There
is no communication between the corners. This requires local MPI communications, followed by an instance
of MPI Barrier(). It may so happen that not all particles end up in the correct MPI domain after just one
communication (this is true for the particles that may have moved across the corners). If the particles happen to
move across a corner, they may have to loop around the domain in multiple directions to get back to the correct
domain. This necessitates multiple local MPI communications followed by multiple instances of MPT _Barrier ().
Although this is fundamentally a simple approach to get the particle particles back to the correct subdomain,
multiple loops over local communications and MPI_Barrier () can constitute a serious performance bottleneck
in the particle mover module.

To remedy this, we will rewrite this communication part in such a way that each MPI subdomain commu-
nicates only once with all of its neighbouring 26 subdomains in 3D geometry. This can alleviate the need
for looping through multiple instances of local communications and MPI Barrier(). Let us note that this
optimisation part applies to both the CPU and GPU versions of the code.

This document is Public (PU)
Page 30 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

» CPUE2)
~ Processes (98)
» [1773299] srun
~ [1773353] slurmstepd: [53743¢
» CUDA HW (0000:1d:00.0 - NV
~ Threads (5)
~ [1773353] MPI Rank 25

e = = g — e e W M - — r

OpenAcC Compute Constnuct: Parfdes3D. D [- =
| Wwait: Particles3D.cpp:1482 | | Wait: Particles3D.cpp:1482 | { Wwait:Particles3D.cpp:1482 | | Wait : Particles3D.cpp: 1482 I

MPI

i Particle_Wover [12.683 5]
(__updatePositionLoop [1.1915] | |__updatePositionLoop [1.2015] | (__updatePositionLoop [1.1935] | (updatePositionLoop [1.664 5]]

NVTX

CUDA API I cuStreamSynchronize cuStreamSynchronize)

(cuStreamSynchronize | I cuStreamSynchronize

4 threads hidder -+
= [1773346] slurmstepd: [53743¢

b CUDAHW (0000:1d:00.0-NV.———— v« gom = -o o 18— — e e - - .. T
~ Threads (5)
~ [1773346] MPI Rank 18

!
OpenAcc T T prra B o T e PP T
P | Wait: Particles3D.cppr1482 | [wait: Particles3D.cppr1482 | | wait: Particles3D.cpp1482 | f Wait : Particles3D.cpp:1482 |

et D 0

M| Particle_Mover [12.683 5]
NVTX =

updatePositionLoop [1.210s] | [updatePositionLoop [1.177 s] | [updatePositionLoop [1.153 5] | (updatePositionLoop [1.650 5] |

CUDAAPI I cuStreamsynchronize 1 ol cuStreamsynchronize) B cuStreamsynchronize

cuStreamSynchronize |

Figure 13: Screenshot of the analysis of the particle mover module, being run on a single GPU using OpenACC,
using NVIDIA Nsight Systems. We are profiling the code with nvtx to better understand the compute regions,
data transfer, the wait times, and synchronisation.

1 #ifdef GPU_PREFETCHING

2 cudaMemPrefetchAsync (u, sizeof (double)*nop, 0);
3

1

o

cudaMemPrefetchAsync (v, sizeof (double)*nop, 0);
cudaMemPrefetchAsync(w, sizeof (double)*nop, 0, 0);

o

6 cudaMemPrefetchAsync(x, sizeof (double)*nop, 0, 0);
7 cudaMemPrefetchAsync (y, sizeof (double)*nop, 0, 0);
8 cudaMemPrefetchAsync(z, sizeof (double)*nop, 0, 0);

10 cudaMemPrefetchAsync (Ex_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
11 cudaMemPrefetchAsync (Ey_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
cudaMemPrefetchAsync (Ez_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);

cudaMemPrefetchAsync (Bx_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
cudaMemPrefetchAsync (By_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);

16 cudaMemPrefetchAsync (Bz_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);

17

18 cudaMemPrefetchAsync (Ex_ext_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
19 cudaMemPrefetchAsync (Ey_ext_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
20 cudaMemPrefetchAsync (Ez_ext_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
21

22 cudaMemPrefetchAsync (Bx_ext_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
23 cudaMemPrefetchAsync (By_ext_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
24 cudaMemPrefetchAsync (Bz_ext_d, sizeof (double)*(nxn*nyn*nzn), 0, 0);
25 #endif

Listing 1: Asynchronously prefetch the memory (requires CUDA) on the device for the particle velocities
(u, v, w), particle positions (x, y, z), electric field (Ex_.d, Ey.d, Ez_.d), magnetic field (Bx.d,
By_d, Bz.d), and the external electric and magnetic fields (Ex_ext_d, Ey_ext_d, Ez_ext.d, Bx_ext.d,
By_ext_d, Bz_ext d).

7.4.2 GPU porting: Moment Gatherer

The moment gatherer module computes the different moments, namely, the charge density, the current density
of each species, and the pressure tensor. Computing these quantities requires one to iterate over Ny particles
of ng species. This requires several local internode communications to send and receive boundary data. This
becomes necessary as to compute the current and density at any given grid point, one needs to compute the
effective contribution from all particles.

Currently, we are starting to work on offloading the moment gatherer module to GPU, which includes using
NVIDIA Nsight Systems to identify scope of improvement and optimisation of the GPU code. For this module,

Page 31 of 38

7.4 GPU porting and Kernel Optimisations

we aim on obtaining around 40 — 50% of the memory bandwidth on the GPUs.

7.4.3 GPU porting: Field Solver

The field solver is the least expensive module of iPic3D, however, computing the electromagnetic fields demands
a plethora of collective communications that can be an impediment to the code performance. We use the GMRes
module of the publicly available PETSc library to compute the solution of the Maxwell’s equations to obtain the
electromagnetic fields.

We aim on using the CUDA-based GMRes module (of PETSc) for the field solver for NVIDIA GPUs on
the Leonardo Booster partition and the HIP-based GMRes module for AMD GPUs on LUMI-G. Due to the
multiple global communications (or synchronisations) needed, our aim is to achieve around 20 — 40% of the
peak memory bandwidth on the GPUs. A relatively low throughput on the cheapest module should not
severely deteriorate the overall code performance. In case it does, we will explore the possibility of using
other publicly available libraries for the field solver, for instance the Intel Math Kernel library (https://
www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html) or the NVIDIA AmgX library
(https://developer.nvidia.com/amgx). We will also explore the possibility of using exponential integrators
and polynomial interpolation methods [8, 9] that can be attractive for massively-parallel architectures, such
as GPUs. We will decide on these alternatives if the GPU version of GMRes, which we will develop, fails to
achieve significant speedup relative to the other two modules.

7.4.4 Research interaction with CINECA

We are in the final stages of optimisation of the particle mover module on the GPUs. In September, Pranab
Deka (KU Leuven) will visit CINECA, Bologna for a two-week period to work in close collaboration with Nitin
Shukla, Alessandro Romeo, and Elisbetta Boella (E4) to finalise the porting of all three modules to
GPUs, which will run on Leonardo Booster. Following this visit, we will continue working on optimising the
different modules in order to obtain high scalability on multiple GPUs on Leonardo. We will also start working
on compiling, running, and benchmarking the so-developed GPU version of iPic3D on AMD GPUs on LUMI-G.
The progress and output of which will form a significant part in the next deliverable (due December 2024).

This document is Public (PU)
Page 32 of 38 and was produced under SPACE project EU GA 101093441

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://developer.nvidia.com/amgx

D1.3 — CODE RELEASE (ALPHA)

8 RAMSES

8.1 Introduction

RAMSES [10, 11] is an AMR code that is used to study astrophysical fluid dynamics and the formation of
structures in the Universe. It is based on an oct-tree structure, where parent cells are refined into children cells
on a cell-by-cell basis following some user-defined criteria. RAMSES can deal with 1D, 2D, and 3D Cartesian
grids. A high-level description of the code and its algorithms can be found in Section 8 of Deliverable D1.2.

8.2 CI/CD implementation

RAMSES is publicly available on Bitbucket (https://bitbucket.org/rteyssie/ramses/src/master/). This
the main repository which is maintained using the version control system git. It also contains the stable releases
which are delivered once a year, usually after the RAMSES User meeting. This repository is not aimed at
being the one hosting the developments we conduct in the SPACE CoE. The development version is hosted
on the local GitLab platform at CRAL, which is publicly available (https://git-cral.univ-1lyonl.fr/hpc/
space/ramses). This repository is mirrored to the GitLab account hosted by IT4I in order to setup a CI/CD
pipeline targeted at parallel tests on an EuroHPC JU (https://code.it4i.cz/space_coe/ramses) cluster.
Once validated, the developments will be merged to the main repository, following the policy that has been
discussed during the last RAMSES User Meeting (pull request, review by RAMSES developers external from
SPACE, and merge).

The CI/CD in place for the public version of RAMSES consists of an automatic test that is integrated in
the CI pipeline. It consists of a build (make) of the code which is done after each commit. It is run on the
Bitbucket CI/CD facilities. Then, an automatic test suite is run once a day on a dedicated computer hosted by
the main developer Romain Teyssier. The results are then sent to the Bitbucket wiki to keep track of the daily
results. The test-suite is thus not integrated to the CI pipeline and, as currently designed, the last commit is
not automatically rejected if it fails. We participated at the last RAMSES User Meeting held in April 2024.
The RAMSES community decided to move the public version from Bitbucket to GitHub, and at the same time
improving the CI/CD workflow. We will participate to this effort, and the work done in the framework of
SPACE CoE will thus benefit a larger community.

Within the framework of SPACE CoE, we aim to optimise the CI/CD pipeline and automate it. We have
set up a CI pipeline to compile the code and run a short test suite on the CRAL GitLab. The test suite is done
on physical setups (Sod tube, implosion, advection) that test the main kernel of RAMSES, and in particular,
the hydro module which we have identified for optimisations. Currently, the CI pipeline is carried out after
each commit. The development repository is now mirrored on the GitLab account hosted by IT4l (https:
//code.itdi.cz/space_coe/ramses). It is automatically updated after each commit on the development
CRAL GitLab repository. The next step for the upcoming weeks is to setup an automatic conditional CI/CD
pipeline that runs independently at CRAL and at IT4I.

This will enable us to maintain a compiling and working version on Karolina. We envision to deploy this
strategy on all EuroHPC JU clusters (if GitLab servers are available) in order to maintain the version of
RAMSES on the different EuroHPC JU clusters.

Our future plan for CI/CD for the coming months is as follows:

e optimise the CI pipeline to only compile the code after each commit and run the test suite only once a
day on the CRAL development repository;

e setup the conditional pipeline to run the test suite after each commit at IT4I in order to test the parallel
implementations (MPI and OpenMP);

8.3 Running on EuroHPC JU clusters

We have installed and benchmarked RAMSES on the EuroHPC JU clusters (CPU only) - Karolina, Leonardo
DCGP, and LUMI-C. We ran the three test cases that we presented in D1.1. Fig. 14 shows a strong scaling
test performed with RAMSES on the EuroHPC clusters Karolina, Leonardo DCGP, and LUMI-C.

Page 33 of 38

https://bitbucket.org/rteyssie/ramses/src/master/
https://git-cral.univ-lyon1.fr/hpc/space/ramses
https://git-cral.univ-lyon1.fr/hpc/space/ramses
https://code.it4i.cz/space_coe/ramses
https://code.it4i.cz/space_coe/ramses
https://code.it4i.cz/space_coe/ramses

8.4 GPU porting and Kernel Optimisations

Strong scaling time

application = ramses
input = sedov3d
level = 9-9

1034 —— karolina
] leonardo

—— |lumi

10 4

time

10% 4

100':

10° 10! 102 103 104
number of cores

Figure 14: Strong scaling of RAMSES on a Sedov-Taylor blast test. The grid corresponds to the small con-
figuration of RAMSES test case 1, i.e. a resolution of 5123. The total wall-clock time is given as a function
of the number of MPI processes. Overall, the Karolina, Leonardo DCGP, and LUMI-C clusters show similar
performance.

8.4 GPU porting and Kernel Optimisations

In the first year, we have investigated the OpenMP porting of RAMSES on both CPU and GPU as a proof of
concept. We report our results in the following sections.

8.4.1 CPU Optimisation on Kernel 1: Godunov solver

The Godunov solver is the most time consuming kernel for pure hydrodynamical simulations. It has been
selected for performance analysis and optimisations in D1.2 and D2.1. From D2.1, the kernel already looks well-
optimised on CPU architectures. The challenge is to port it on different hardware platforms (ARM, GPUs).

The computational part of the hydro kernel module of RAMSES mainly consists of assembling vectors (of a
given size NVECTOR) and calling a Godunov solver onto them. Parallelising the loop over these vectors is a
good solution to enable the use of multiple threads concurrently inside a subdomain.

With this solution, each thread assembles its own vector, consisting of a portion of the mesh and its neigh-
bourhood. Then, each thread calls the same Godunov solving routine in order to numerically solve the hydro
equations at the current time iteration. At the end, each thread writes back its results into the main arrays
holding the physical variables of importance regarding the hydro module.

As a first step, we isolated the kernel and implemented OpenMP instructions.

This document is Public (PU)
Page 34 of 38 and was produced under SPACE project EU GA 101093441

D1.3 — CODE RELEASE (ALPHA)

Strong scaling

application = ramses

cluster = leonardo

input = sedov3d

level = 11-11

commit = c0949956079068c4c04c3e8d5afe7fb4307098d9

—— openmp_1
openmp_16
—e— openmp_2

102 —— openmp_4
—— openmp_8

6 x 10! 1

time

4 x 10!

3x10%1

2x 10!

2x10° 3x10° 4x103 6x10° 104
number of cores (MPI domains x OpenMP threads)

Figure 15: Strong scaling of RAMSES on a Sedov-Taylor blast test with different number of OpenMP threads
with a fixed number of cores (MPI ranks x OpenMP threads)

. subroutine godunov_fine(ilevel)
2 #ifdef OPENMP
3 use omp_1lib
! #endif

6 ! Loop over active grids by vector sweeps

7 ncache=active (ilevel)’%ngrid

8 '\$omp parallel do default(none) shared(ncache,ilevel,active)
private (ngrid, ind_grid)

9 do igrid=1,ncache,nvector

10 ngrid=MIN (nvector ,ncache-igrid+1)

11 do i=1,ngrid

12 ind_grid(i)=active(ilevel)%igrid(igrid+i-1)

13 end do
14 call godfinel(ind_grid ,ngrid,ilevel)
15 end do

16 end subroutine godunov_fine

It already shows a significant gain over the pure MPI approach in terms of strong scaling potential. Indeed,
on the Sedov3D test case run on Leonardo DCGP, with a mesh size of 20482, the Fig. 15 below shows that,
using the same number of 14336 cores by employing 4 OpenMP threads and 3584 MPI processes achieves better
strong scaling with a gain of 20% over the full MPI version. This benchmark has been performed using the
GNU Fortran compiler. We now need to check if comparable performance is achieved using the Intel Fortran
compiler. The first OpenMP parallelization has been produced in the frame of the SPACE CoE.

Page 35 of 38

8.4 GPU porting and Kernel Optimisations

Adastra mi250x

1010 ———— ——————y T 18.730+09
i 15340409
. 1.38¢4-09
T 0% E
g s
%
s . () 1e6 parts / GPUs
= —+— (SPH) 8e6 parts / GPUs
5 1085' (SPH) 16e6 parts / GPUs 7§
[/ —— (SPH) 326 parts / GPUs]
—+— (AMR) 128° cells / GPUs |
—— (AMR) 256° cells / GPUs
107 J

.101001.000
MPI ranks (1/Mi250x GCD)

Figure 16: Weak scaling of SHAMROCK-SPH and SHAMROCK-RAMSES on Adastra that represents the total
number of cells or particles updated per second on the entire computational domain for a pure hydro test. The
first attempt to run a Godunov AMR solver (purple and grey) already shows better performance than the SPH
kernels. Indeed, 50 neighbours are required for SPH, while the kernel is more compact for the grid and allows
to update more cells per second.

8.4.2 GPU porting

Some pursuits to port RAMSES to GPUs have already been made, however, without success for the AMR part.
The granularity of the main kernels is too small and too much time is spent in transferring data between CPUs
and GPUs. This is a structural issue of RAMSES that makes it poorly compatible with GPUs and cannot be
fixed without major architectural changes in the code. To illustrate this, we have ported the Kernel 1 (Godunov
solver) on GPUs using OpenMP directives. The acceleration of the code executed using a single NVIDIA A3000
GPU is only a factor < 10 compared to a single CPU.

Thus, we will not investigate porting of RAMSES to GPUs any further. Instead, we will focus on CPU
optimisations for RAMSES. For GPUs, we will use MINIRAMSES and investigate the use of the SHAMROCK
framework to handle the octree structure of the AMR grid.

SHAMROCK (https://shamrock-code.github.io/publications.html) is an in-house framework, under
development at CRAL, tailored for numerical astrophysics on exascale architectures. It is based on an accelerated
parallel octree and is written in C++17 with the SYCL programming standard to run efficiently on GPUs.

SHAMROCK is currently coupled to an SPH solver (the combination is called SHAMROCK-SPH) and it
shows remarkable performance. In Fig. 16, we show a Sedov blast test performed with 65 billion particles.
The code has been scaled up to 1024 AMD MI250X GPUs on the Adastra Cluster at CINES in France with a
parallel efficiency (weak scaling) of 92% across the entire cluster.

The code is also designed to support AMR grids. We will import the Godunov solver and the PIC module of
RAMSES in the octree of SHAMROCK. The first version of SHAMROCK-RAMSES with a 1%%-order Godunov
solver on a uniform grid already shows promising performance (248,551,348 cell/sec with 2562 cells per GPU, see
Fig. 16). In the next months, we will fully port RAMSES Godunov solver (Kernel 1) to SHAMROCK-RAMSES.

This document is Public (PU)
Page 36 of 38 and was produced under SPACE project EU GA 101093441

https://shamrock-code.github.io/publications.html

D1.3 — CODE RELEASE (ALPHA)

9 Conclusions

This deliverable presents the recent progress in optimising and porting several kernels/modules for improved
performance on GPU architectures. The collective efforts across different codes indicate substantial advance-
ments in computational efficiency, scalability, and collaborative development practices. It is worth noting that
the implementation of the CI/CD pipeline is a key feature of each of the codes. Any changes committed to
the repositories undergo a range of tests to verify compilation, proper executable generation, and running one
or more test problems to test correctness and code efficacy have greatly enhanced overall code management.
These pipelines ensure that code updates are seamlessly integrated and rigorously tested, promoting a robust
and efficient development environment. The development of all of the seven codes within the SPACE CoE can
be tracked in the public/open-source repositories presented in Table 2.

Porting modules to GPU and kernel optimisations have been a key focus, resulting in substantial improve-
ments in computational speed and capability. Compiling and running the codes on different EuroHPC JU
clusters such as LUMI, Leonardo, and Karolina is another key achievement. This ensures that the applications
can be used in different HPC environments efficiently, making them more accessible and usable for researchers.
Recently, most code owners have gotten access to computing time some of the other EuroHPC JU clusters,
namely VEGA, MeluXina, MareNostrum, and Discoverer. The applicability of the SPACE codes on these
clusters as well as scaling tests will constitute a significant part of the upcoming deliverables.

Code Git Repository Public / Open Source
OpenGADGET | https://code.it4i.cz/space_coe/opengadget3 YES
PLUTO https://gitlab.com/PLUT0-code/gPLUTO YES
BHAC https://code.itdi.cz/space_coe/bhac_mini_app YES
ChaNGa https://github.com/N-BodyShop/changa YES
FIL https://code.it4i.cz/space_coe/fil YES
iPic3D https://code.it4i.cz/space_coe/iPic3D YES
RAMSES https://code.it4i.cz/space_coe/ramses YES

Table 2: List of repository for the codes involved in SPACE CoE.

Overall, the collective efforts in code development highlight the progress of SPACE CoE in facilitating the use
of HPC tools for scientific research. The focus on GPU offloading, kernel optimisation, CI/CD implementation,
and adaptation to EuroHPC infrastructures has not only improved performance but also fostered a collaborative
and innovative environment for ongoing development.

Page 37 of 38

https://code.it4i.cz/space_coe/opengadget3
https://gitlab.com/PLUTO-code/gPLUTO
https://code.it4i.cz/space_coe/bhac_mini_app
https://github.com/N-BodyShop/changa
https://code.it4i.cz/space_coe/fil
https://code.it4i.cz/space_coe/iPic3D
https://code.it4i.cz/space_coe/ramses

REFERENCES

References

1]

[11]

H. Menon, L. Wesolowski, G. Zheng, P. Jetley, L. Kale, T. Quinn, and F. Governato, “Adaptive techniques
for clustered N-body cosmological simulations,” Computational Astrophysics and Cosmology, vol. 2, p. 1,
Mar. 2015.

D. Ryu and T. W. Jones, “Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for
One-dimensional Flow,” The Astrophysical Journal, vol. 442, p. 228, Mar. 1995.

“Repository of the changa code on github,” https://github.com/N-BodyShop/changa, accessed:
28.10.2023.

P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn, “Massively parallel cosmological simulations
with ChaNGa,” in Proceedings of IEEFE International Parallel and Distributed Processing Symposium 2008,
2008.

J. W. Wadsley, B. W. Keller, and T. R. Quinn, “Gasoline2: a modern smoothed particle hydrodynamics
code,” Monthly Notices of the Royal Astronomical Society, vol. 471, no. 2, pp. 2357-2369, Oct. 2017.

J. G. Stadel, “Cosmological N-body simulations and their analysis,” Ph.D. dissertation, University of
Washington, Seattle, Jan. 2001.

S. Markidis, G. Lapenta, and Rizwan-uddin, “Multi-scale simulations of plasma with ipic3d,” Mathematics
and Computers in Simulation, vol. 80, no. 7, pp. 1509-1519, 2010.

P. J. Deka, L. Einkemmer, and M. Tokman, “LeXInt: Package for exponential integrators employing Leja
interpolation,” SoftwareX, vol. 21, p. 101302, 2023.

P. J. Deka, A. Moriggl, and L. Einkemmer, “LeXInt: GPU-accelerated Exponential Integrators package,”
arXiv e-prints, p. arXiv:2310.08344, 2023.

R. Teyssier, “Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code
called RAMSES,” Astronomy and Astrophysics, vol. 385, pp. 337-364, Apr. 2002.

“Ramses repository on GitLab,” https://bitbucket.org/rteyssie/ramses/src/master/.

This document is Public (PU)

Page 38 of 38 and was produced under SPACE project EU GA 101093441

https://github.com/N-BodyShop/changa
https://bitbucket.org/rteyssie/ramses/src/master/

	Introduction
	OpenGADGET
	Introduction
	CI/CD implementation
	Running on EuroHPC JU Clusters
	GPU porting and Kernel Optimisations

	PLUTO
	Introduction
	CI/CD implementation
	Running on EuroHPC JU Clusters
	GPU porting and Kernel Optimisations
	Alpha code release: Final remarks

	BHAC
	Introduction
	CI/CD implementation
	Running on EuroHPC JU clusters
	GPU porting and Kernel Optimisations

	ChaNGa
	Introduction
	CI/CD implementation
	Running on EuroHPC JU clusters
	GPU porting and Kernel Optimisations

	FIL
	Introduction
	CI/CD implementation
	Running on EuroHPC JU clusters
	GPU porting and Kernel Optimisations

	iPic3D
	Introduction
	CI/CD implementation
	Running on EuroHPC JU Clusters
	GPU porting and Kernel Optimisations

	RAMSES
	Introduction
	CI/CD implementation
	Running on EuroHPC JU clusters
	GPU porting and Kernel Optimisations

	Conclusions

