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D1.2 – Code Modules and Kernels

Executive Summary

This document provides high-level descriptions for each code in the SPACE CoE. Within this code description
the focus is on the main algorithms, which are used for each codes. These variety of algorithms range from
Smoothed-Particle Hydrodynamics, Adaptive-Mesh-Refinements, different Runge-Kutta schemes to Particle in
Cell algorithms.

In addition, the modules and kernels identified by each code for optimization are described as well as how
the mini-apps will be created for each code. In short each code presented between one and six different regions.
The selected regions address the main functions of the different codes, providing large potential for total wall
time gains in the light of future optimisations. One aspect all codes and regions focus on is the optimization
of the different communication and work load balancing schemes since this is a crucial component towards the
exa-scale.

The identification of the modules and kernels is the first step towards the further development of the
different codes. The identification and the creation of the mini-apps or alternative testing frameworks will
create a benchmark for all future activities in WP2.
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D1.2 – Code Modules and Kernels

1 Introduction

The European codes in the Scalable Parallel Astrophysical Codes for Exascale (SPACE) Centre of Excellence
(CoE) are among the most used and widespread codes in astrophysics. The SPACE CoE aims to enable these
codes to exploit the pre-exascale systems funded by EuroHPC JU efficiently and effectively to enable their
transition to the exascale. The goal of this deliverable is to describe the fundamental modules and kernels of
the codes in the SPACE CoE for future activities. The selection of these modules and kernels was done by the
responsible partners following the insights resulting from the profiling activity described in D2.1. The purpose
of their selection is to identify modules and kernels, which are going to be extracted as mini-applications for
optimization and co-design, and report on initial performance, scalability, and energy efficiency. The preferred
methodology for this extraction will be to disentangle specific infrastructure functionalities and physics from
the code.

The general procedure to create a mini app is to isolate and extract a particular module from the code and
create a stand-alone application with this module. The mini-app then allows us to check an updated version
of the module against the original to a) verify the results and b) compare its performance. However, the exact
details of the methodology for each code will be defined by each code owner. A simplified view of the design of
such a mini-app is shown in Fig. 1.

1 int main(){

2

3 initalization/read -in();

4

5 tstart = get_time ();

6 original_results = original_module ();

7 tend = get_time ();

8 time_original = tend - tstart;

9

10 tstart = get_time ();

11 new_results = updated_module ();

12 tend = get_time ();

13 time_updated = tend -tstart;

14

15 check_validity(new_results , original_results);

16

17 print << "Change in runtime:" << time_updated/time_original;

18 }

Figure 1: Schematic view of a mini-app. After the initialization and the read-in at first, the old version of the
module is executed and secondly with an updated version. Afterwards, the results are verified and, at last, the
performances can be compared (in this simple example, only the total run-time is compared). This design will
allow a simple and direct comparison of the updated version to its original.

While this approach would be ideal, due to the complexity of the codes involved this setup is not achievable
for all codes. To mitigate this complex task an alternative approach is not to extract the kernel, but to remove
not needed functionality the code. While this might not create an as clean mini-app as described above, the
required functionality of the code will remain intact and allows for much easier access to the required modules.
An additional benefit of this approach is that a complex and time consuming back-integration of the updated
modules can be omitted since it is already embedded in the larger overall code structure.

The following chapters are organized as one per code, where the responsible code owners explain their code
structure and present their selected modules and kernels.
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2 OpenGADGET

2.1 High-level description of the code

OpenGADGET is a collisionless N-Body/Lagrangian cosmological code using the smoothed particle hydrody-
namics (SPH) computational method to describe the motion of fluids in addition to the gravitational forces.
The code allows running simulations in a full cosmological context, i.e. accounting for an expanding background
and the presence of matter, both ”dark” and baryonic (the ordinary matter), and dark energy. Although the
full cosmological context is often the default choice, having a non-expanding background and a setup with only
dark or baryonic matter is equally possible.

In addition to the gravitational problem, it also simulates the evolution of the physical properties of the
baryonic matter subject to hydrodynamics and other physical effects such as radiative cooling, star formation,
energy feedback, radiative transfer, magnetic fields and others that we collectively refer to as ”extra physics”.

The two most important algorithms in the code are the computation of the gravitational and hydrodynamical
forces. These calculations are implemented in OpenGadget by three different algorithms:

ALG 1 Gravity: Direct Summation + Tree Multipolar expansion; the particles are organized in a highly-
optimized Barnes&Hutt Oct-Tree structure that ensures aNp logNp retrieval time, whereNp is the number
of particles. Being the gravitational force additive, the resultant force to every particle is due to the sum-
mation of every other particle. However, since performing a direct summation would result in a prohibitive
N2

p scaling, only the closest particles’ contribution is accounted for particle-wise. The gravitational force
due to more distant particles is calculated via the multi-polar expansion of the tree nodes that contain
those particles; in fact, distant enough particles can be represented effectively as a single particle of mass
equal to the entire mass, with a relative accuracy that depends on the ratio between the spatial extent of
the particles distribution and the distance of their centre-of-mass from the target particles. The acceptable
accuracy is a code parameter that determines the precise definition of ”close” and ”distant”.

ALG 2 Gravity: Particle-Mesh; ”very distant” particles could be treated separately, accounting for the average
gravitational field due to large-scale matter distribution that results from the spreading of the particles’
mass onto a grid. The resulting density distribution is used as a known term of the Poisson equation
∆Φ = 4πGρ, which is solved via FFT on the mentioned grid. The calculation of ∇Φ then conveys the
contribution to the gravitational force from the large scales. Since the evolution of the large-scale averaged
density field is slower than the evolution of the small-scale field, the update frequency is also minor, and
that increases the algorithmic advantage of mixing algorithms ALG 1 and ALG 2 for ”close” and ”distant”
particles.

ALG 3 Hydro: Smoothed-Particles Hydrodynamics (SPH); the hydrodynamics forces among baryonic
gas particles are calculated via a state-of-the-art modern implementation of the SPH technique (presented
initially by Gingold & Monaghan, 1977).

Every gas particle is considered a sample of the gas distribution in a volume determined by a kernel
function W () with compact support centered on the particle itself, whose radius h is called the ”smoothing
length”. This radius is determined by the fact that a given number of other gas particles, referred to as
”the neighbouring particles”, are found within the volume. The local density of matter is then interpolated
locally using the kernel W as a weighting function.

Each neighbour contributes to the local density ρi,gas at the position of every particle i as mj×W (h, rij/h,
where rij is the distance between the particle i and its neighbour particle j. Then, summing over all the
neighbours j, ρi,gas =

∑
j mj ×W (h, rij/h).

In turn, the local density ρi,gas of each particle is used in the interpolation of all the other baryonic
physical fields fb, that is estimated at the position of particle i as fb(xi) =

∑
j fb(xj)/ρj ×W (h, rij/h).

This algorithm naturally couples with the tree-based ALG 1 since the same API used to retrieve neighbors
to estimate the gravitational force is used to determine the local radius hi for every particle i.

The high-level abstraction of the Gadget code is depicted in the algorithmic view reported in Figure 2. In
simple terms, the code consists of two parts. First is the initialisation: reading initial conditions, reading the
parameter file, and initializing the required physical modules. Second, an ”infinite” time loop that is the body
of the code. Each of these time steps consists of a series of subsequent calculations: the estimate of the grav-
itation acceleration, the hydrodynamical acceleration and the ”extra-physics” (with which we indicate all the
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D1.2 – Code Modules and Kernels

physical processes for baryons, like the radiative cooling, star-formation, stellar feedback, black-holes feedback,
...). In addition, the domain decomposition, which amounts to the re-distribution of particles to keep the work
as balanced as possible, is performed depending on evaluating some global and local conditions.

All local physical processes modeled in the code rely on this general structure. Either they are exquisitely
local, requiring computations based only on the properties of a single particle, or they need to evaluate the
physical conditions in a limited space region around a target particle’s position. For example, the radiative
cooling of a single particle depends upon only its physical properties (which, in turn, have been shaped before-
hand by other non-local processes), like the density, the temperature, the chemical composition, and possibly
an external radiation field. In contrast, the accretion of gas by a black hole requires that it collects the overall
physical information around its position by scanning its neighborhood. In the second case, the same routines
are used as in the gravity tree, the gas density and the hydrodynamics to find the neighbour particles of a
target particle and their values of the needed physical quantities. Finally, there is a last fundamental feature of
a massively parallel code: the domain decomposition, which distributes the particles across the different tasks
and is the source of the constant re-balancing of the parallel workload

The distribution in OpenGADGET is based on space decomposition through a space-filling Peano-Hilbert
curve. After the Peano index of each particle has been calculated and the particles are cross-sorted by their
indexes, the entire computational domain can be seen as a one-dimensional set; the segments of this distribution,
which correspond to connected space sub-volumes, are used to determine the domain of every MPI task. The
computational cost of each segment is then defined as the sum of the computational cost of all the particles
within that segment. By iteratively adjusting the segments’ boundaries, an optimal work balance can be
achieved within the memory constraints. The code favors the work balance instead of the load balance; some
MPI tasks may have a higher fraction of low-cost particles, while others may have a smaller quantity of more
costly particles within the memory constraints. The minimum number ND of segments is equal to the number
NT of MPI tasks; however, a finer balance is achieved when a multiple of that is adopted, ND = ηNT so that
the computational domain of every task consists of η segments of the one-dimensional distribution based on
the Peano-Hilbert curve. Sorting the η ×NT segments by their computational cost and round-robin assigning
to different MPI tasks the pairs made of the (most-intense, less-intese) among the unassigned segments, a
better balance among tasks work distribution can be attained.

2.2 Kernels targeted for optimization

Given the above description, we conclude that the essential kernels are the following:

A) Tree Building - all the routines related to the building of the OctTree;

B) Tree Walking - all the routines related to the solution of the k-Nearest Neighbour (kNN) problem, or
the approximate kNN problem;

C) Domain Decomposition - all the routines related to the individuation of computational domains and
the communication patterns used to exchange data;

D) Gravity Tree - the calculation of the direct and tree-estimated gravitational forces among the particles;

E) Density Loop - the loop for the local density estimation.

We remind the readers that, as detailed in D2.1, we have concentrated the performance tests on the high-
level sections responsible for most of the computation and communication. A simplified view, including the
profiling regions, is shown in Figure 3. Following the activity of deliverable D2.1, the fundamental code aspects
that need to be stressed and improved are as follows:

• the core-efficiency; we need to improve the code’s capability of exploiting the instruction-level parallelism
(ILP) in terms of both achieving a larger instructions per Cycle (IPC) and a larger vectorization (especially
for the larger vector sizes); that may need some re-designing of the data structures to expose better
opportunities for vectorization and exploitation of out-of-order capabilities.

• OpenMP scalability; where present, the thread-level scalability exhibits a good/very good behaviour, al-
though there is room for improvement. However, two important regions need significant effort, namely the
domain decomposition and the extra-physics, in which the OpenMP support is either not fully developed
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2.2 Kernels targeted for optimization

Figure 2: General view of OpenGadget’s workflow.
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D1.2 – Code Modules and Kernels

or absent.

• MPI scalability; the profiling has shown that the communication efficiency and the parallel load balance
can be quite improved in several regions.

A further inquiry is needed to assess the opportunity for either a re-design of the parallelization in general
or local refinements and improvements.

• overlap of communication and computation; that is currently achieved with different levels of efficiency
only where the GPU support is developed. However, a general redesign to enhance this aspect is to be
considered.

• The profiling done for D2.1 showed that the domain decomposition, dominated by MPI communications,
has significant limitations in the strong scaling.

The reason for low communication efficiency is that over 50% of the run time is spent on an MPI Waitall.
In addition, the OpenMP threads are not utilized appropriately, resulting in the limited OpenMP load
balance seen during the profiling. This insufficient threading results in poor performance, where the other
CPU cores are idle during the MPI operations, done only by the master thread.
Since domain decomposition is responsible for distributing the workload across the different tasks and gets
called at almost every step, improving this kernel would significantly improve the code overall. Therefore,
this kernel will need a re-designing of its architecture that includes an efficient threding and a re-design
of the calculation-communication patterns. The noticeable improvement is to enhance the work-sharing
among the threads so that the master thread can communicate small data chunks while the other threads
are processing. A carefully designed new scheme will also cure the large amount of time spent in the MPI
Waitall. In particular, the implementation of a stencil decomposition would bring great benefit to this
kernel.

According to a best-effort strategy, we also plan to explore the following.

1. the feasibility of introducing a native numa awareness so that the code can (i) exploit more efficiently the
shared memory at the node level by leveraging the DMA possibilities offered by the MPI standard, and (ii)
reduce the inter-node communication surface by appointing one MPI task per node as a node master that
manages the message exchange with other levels. The coupling and enhanced OpenMP parallelization and
an explicit numa awareness would allow more efficient communication/synchronization and computation
overlapping, especially in the domain decomposition and the neighbours’ search.

2. the impact of different data models and structures layout, especially on exploiting the CPU’s ILP capa-
bilities, the vectorisation, and the communication patterns.

Since operating on the entire code would be difficult and isolating the single kernels requires some coding
effort, we have chosen to have a stripped-down version of the code, cleaned by all the extra physical modules
and experimental options.
Hence, we obtained a mini-app that includes an essential version of the kernels listed above, and
that allows us to both (i) intervene in each of them separately and (ii) to act on the general data structures
harmonizing their usage throughout all the kernels to test the impact of different data models.
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2.2 Kernels targeted for optimization

1 int main(){

2

3 do_initialisation ();

4

5 while (1){

6 EXTRAE_EVENT_START ( NumCurrentTimeStep ) // step region , or region 0

7

8 write_snapshot_if_desired ();

9

10 // exit code when max time is reached

11 if ( Time >= maxTime ){

12 write_snapshot ();

13 break ;

14 }

15

16 do_first_halfstep_kick ();

17

18 // compute gravitational forces

19 EXTRAE_EVENT_START ( EXTRAE_REG_DD1 ) // region 1

20 domain_decomposition_intensity_decision ();

21 EXTRAE_EVENT_STOP ( EXTRAE_REG_DD1 )

22

23 EXTRAE_EVENT_START ( EXTRAE_REG_DD2 ) // region 2

24 domain_decomposition_intensity_execute ();

25 EXTRAE_EVENT_STOP ( EXTRAE_REG_DD2 )

26

27 EXTRAE_EVENT_START ( EXTRAE_REG_GRAV ) // region 3

28 compute_grav_accelerations ();

29 EXTRAE_EVENT_STOP ( EXTRAE_REG_GRAV )

30

31 // compute fluid flows

32 EXTRAE_EVENT_START ( EXTRAE_REG_DENS ) // region 4

33 compute_densities ();

34 EXTRAE_EVENT_STOP ( EXTRAE_REG_DENS )

35

36 EXTRAE_EVENT_START ( EXTRAE_REG_HYDRO ) // region 5

37 compute_hydro_accelerations ();

38 EXTRAE_EVENT_STOP ( EXTRAE_REG_HYDRO )

39

40 do_second_halfstep_kick ();

41

42 // calculate additional physics

43 EXTRAE_EVENT_START ( EXTRAE_REG_PHYS ) // region 6

44 calculate_non_standard_physics ();

45 EXTRAE_EVENT_STOP ( EXTRAE_REG_PHYS )

46

47 EXTRAE_EVENT_STOP ( GET_EVENT_NUMBER ( All . NumCurrentTiStep -1 ))

48 }

49 }

Figure 3: Simplified structure of the main function for OpenGadget. Here, the code splitting into the initial-
ization and the main time loop can be clearly seen.
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D1.2 – Code Modules and Kernels

3 PLUTO

PLUTO [1, 2] is designed to integrate a general system of conservation laws that we write as:

∂U

∂t
= −∇ · T (U) + S(U) . (1)

Here U denotes a state vector of conservative quantities, T (U) is a rank 2 tensor (the rows of which are the
fluxes of each component), and S(U) defines the source terms. Additional source terms may arise implicitly
when taking the divergence of T (U) in a curvilinear system of coordinates. An arbitrary number of advection
equations may be added to the original conservation law.

The explicit form of U and T (U) depends on the physics modules been selected. PLUTO supports 5 different
physics modules corresponding to different conservation laws:

• HD (HydroDynamics): it implements the Euler equation of gas-dynamics evolving density, momentum
and energy (e.g. U = {ρ, ρv, E});

• MagnetoHydrodynamics (MHD) (Magneto-HydroDynamics): this implements the ideal or resistive equa-
tions of magnetohydrodynamics. In addition to the variables already included in the HD module, it also
adds the magnetic field;

• RHD (Relativistic HD): (Special) Relativistic extensioon of the Euler equations;

• Relativistic Magneto-Hydrodynamics (RMHD) (Relativistic MHD): (Special) Relativistic extensioon of
the ideal MHD equations;

• ResRMHD (Resistive Relativistic MHD): (Special) Relativistic extensioon of the resistive MHD equations.
In this case, both magnetic and electric fields are included and updated in time.

The divergence-free condition can be controlled either by using the divergence-cleaning technique or by the
Constrained Transport (CT) approach. Since the latter is a more sophisticated and articulated method, we will
describe the high-level description of the code according to the latter framework.

While the components of U are the primary variables being updated, fluxes are computed more conveniently
using a different set of physical quantities, which we take as the primitive vector V . Numerical integration
of the conservation law above is achieved through shock-capturing schemes using the Finite-Volume (FV)
formalism where volume averages evolve over time. Generally speaking, these methods comprise three steps:
a reconstruction routine followed by the solution of Riemann problems at the zone edges and a final evolution
stage. In PLUTO, this sequence of steps provides the necessary infrastructure of the code; see the schematic
diagram in (4): first, volume averages U are more conveniently mapped into primitive quantities V . The left

and right states V L,R
i+1/2 are then reconstructed inside each cell:

V L
i+1/2 = R+ (Vi) , V R

i−1/2 = R− (Vi) (2)

where R± is the reconstructor operator in the positive (+) or negative (−) direction, i stands for the cell
center while i± 1/2 identify the interfaces. Operations along the y- and z- directions are obtained in a similar
way. At zone interfaces, a Riemann problem is then solved between adjacent L/R states to obtain a stable

numerical flux F
(d)
i+1/2, where d = x, y, z. The solution is finally advanced in time in a conservative fashion, so

that zone-centered variables are updated through

Un+1
c = Un

c − ∆t

∆V

∑
d

∫
F(d) · dSd +∆tS , (3)

where c ≡ (i, j, k), ∆V is the cell volume. For staggered variables (used by the CT approach), the update step
relies on a discrete form of the Stokes theorem:

Bn+1
d = Bn

d − ∆t

∆Sd

∮
E · dl . (4)

where, using a shorthand notation, d indicates that the surface average of a generic magnetic field component
located at zone faces (e.g. Bd with d = y means By,i,j+1/2,k). Likewise, the electric field line integral is done
on the boundary of the corresponding face.
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3.1 High-level description of the code

Figure 4: Diagram of the Reconstruct-solve-average (RSA) strategy

3.1 High-level description of the code

The computational expensive part of the code is enclosed in the loop that cycles as long as either the final
simulation time has been reached or the maximum number of steps has been reached. The main function
executed in the body of the while loop is AdvanceStep() which advances the solution array to the next time-
level (Eq. 3 and Eq. 4), using a Runge-Kutta (RK) time stepping method of the desired order (at present orders
1, 2, 3 and 4 are available). For a RK method of order n, the AdvanceStep() typically consists of n stages during
which the Boundary() and UpdateStage() are called multiple (that is, n) times. For the 3rd-order RK, as in
our selected case, the AdvanceStep() function consists of 3 similar stages.

As already mentioned, a single RK stage implements a call to the Boundary() function followed by a
call to UpdateStage(), which evaluates the right-hand sides of Eq. (3) and (4). More specifically, during
UpdateStage(), one first reconstructs primitive variables (Eq. 2) in order to obtain left and right states
(Reconstruct() function). These states are then fed into the Riemann solver (RiemannFlux() function) which
construct the flux function needed to compute the integrals on the right-hand side of Eq. (3). The interface
fluxes are then collected together, including also the source term, in the RightHandSide() function which does
the summation in Eq. (3). Finally, the information obtained during RiemannFlux() is further re-processed to
construct the electromotive force in Eq. (4) during the CT Update() function. These operations are extended
to every dimension, and the high-level structure of the code is shown in 5.

3.2 Kernels targeted for optimization

3.2.1 Kernel 1 - Boundary Conditions (Boundary() function)

This is a fundamental routine as it contains basically all the process communications and it is called once per
stage. The Boundary() function sets both internal (that is, inter-processor) and physical boundary conditions
on all of the sides of the computational domain. Its basic purpose is to fill ghost zones for both cell-centred
and face-centred data arrays. The type of physical boundary condition at the leftmost or rightmost side of a
given dimensions is set by the user at runtime. Possibile options are periodic, outflow (zero-gradient), reflective,
axisymmetric, equatorial symmetric or user-defined. For our chosen test, outflow boundary conditions have been
selected. Conversely, when a processor does not abut a physical boundary, ghost zone values are exchanged
between neighbour processors. This step is repeated dimension by dimension for both cell-centered and staggered
data arrays. Currently, our implementation relies on the SendRecv() functions of the Message Passing Interface
(MPI) library.
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D1.2 – Code Modules and Kernels

1 while (last_step !=1){

2

3 AdvanceStep (){

4

5 /* Predictor step (Euler , RK2 , RK3)*/

6 Boundary ();

7 UpdateStage (){

8

9 /* IDIR */

10 Reconstruct ();

11 RiemannFlux ();

12 RightHandSide ();

13

14 /* JDIR */

15 Reconstruct ();

16 RiemannFlux ();

17 RightHandSide ();

18

19 /* KDIR */

20 Reconstruct ();

21 RiemannFlux ();

22 RightHandSide ();

23

24 CT_Update ();

25 }

26

27 /* Stage #2 (RK2 , RK3) */

28 Boundary ();

29 UpdateStage ():

30

31 /* Stage #3 (RK3) */

32 Boundary ();

33 UpdateStage ():

34 }

35 }

Figure 5: Simplified high-level code structure of PLUTO.
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3.2 Kernels targeted for optimization

3.2.2 Kernel 2 - States reconstruction (Reconstruct() function)

At each RK stage, this function is executed once per every dimension (therefore 9 times for a 3D problem using
a third-order RK method), and it calculates the left / right primitive states (see Eq. 2) at zone interfaces i+1/2
using a suitable reconstruction method which we denote by R±(.). The reconstruction is typically based on
piecewise polynomial interpolation subject to monotonicity constraints in order to avoid the Gibbs phenomena in
the presence of discontinuities or steep gradients. In alternative to primitive variables, characteristic variables
(i.e., obtained by projecting primitive variables onto the eigenvectors of the underlying equations) may also
be employed at the cost of substantially increasing the operation count. These methods are essentially one-
dimensional and employ information from adjacent zones. While the code offers different reconstruction methods
- such as, Linear, Piecewise Parabolic, Weighted Essentially non Oscillatory (WENO), Monotonicity Preserving
(MP) algorithm, we select linear (and later on fifth-order WENO and MP reconstruction) for optimization.

3.2.3 Kernel 3 - Riemann Solver (RiemannFlux() function)

The Riemann solver represents the most complex single kernel and computationally costly section of the code.
This function computes the flux function at a zone interface and, in 3D, it is called 3 times per stage and, for
a single step, 3 × n times, where n is the temporal order of the scheme. On input, RiemannFlux() takes the
left and right primitive states at a zone edge (say i + 1/2 or j + 1/2 or k + 1/2) previously obtained during
the reconstruction kernel 3.2.2. PLUTO allows the user to choose different solvers such as the Harte-Lax-van
Leer (HLL) Riemann solver, FORCE, HLLC, HLLD or Roe (see, for instance, [3, 4, 5]), although some choices
may not be available for all the physics modules. On output, it returns the Godunov flux at the corresponding
interface i+ 1/2.

Also, during this step, we compute and store additional information which will serve during subsequent
operations, most notably, i) the maximum wave propagation speed (λmax) for explicit time step computation
and, in the case of CT scheme, ii) interpolation coefficients and electric field components needed to compute
the electro-motive force at zone edges. We point out that different Riemann solvers have, in general, different
computational cost and may differ by a factor 3 or even more.

3.2.4 Kernel 4 - Right Hand Side (RightHandSide() function)

This routine evaluates the right hand side for cell-centered conservative variables, as depicted formally in Eq.
(3). It is invoked 3 times (one per direction) per stage. Interface fluxes are included one direction at a time,
according to

R = − ∆t

∆V
(Ai+1/2Fi+1/2 −Ai−1/2Fi−1/2) + ∆tSi (5)

where Ai±1/2 are the right and left interface areas, Fi±1/2 are the Godunov fluxes previously obtained with a
Riemann solver, ∆t is the time step while Si is the source term including geometrical contribution and body
forces in general.

As already mentioned, during this step, only contributions to density, momentum and energy are effectively
considered. The right hand side for staggered magnetic fields is computed later in a the constrained transport
(CT) kernel.

3.2.5 Kernel 5 - Constrain transport update

This kernel builds the electric field contribution to the induction equation (right hand side of Eq. 4 and it
consists of a discrete version of Stokes theorem.

This kernel can be split essentially into 2 contributions. During the 1st one, information collected during the
Riemann solver calls will be brought together to evaluate stable and properly upwinded electric field components
at cell edges (see [6]). This kernel is intrinsically multidimensional and cannot be reduced to a sequence of 1D
operators. During the 2nd one, the explicit right hand side (analogous to Eq. 5) is constructed using the electric
field just evaluated during the 1st contribution:
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Bn+1
x −Bn

x = − ∆t

∆y∆z

∮
(−Eydy + Ezdz) ≈ −∆t

[
−
(Ey)z+ − (Ey)z−

∆z
+

(Ez)y+
− (Ez)y−

∆y

]
Bn+1

y −Bn
y = − ∆t

∆x∆z

∮
(Exdx− Ezdz) ≈ −∆t

[
(Ex)z+ − (Ex)z−

∆z
−

(Ez)x+ − (Ez)x−

∆x

]
Bn+1

z −Bn
z = − ∆t

∆x∆y

∮
(−Exdx+ Eydy) ≈ −∆t

[
−
(Ex)y+

− (Ex)y−

∆y
+

(Ey)x+
− (Ey)x−

∆x

]
.

(6)

3.3 Mini-apps description

The findings from document D2.1 underscored the computational intensity of these kernels, indicating their
potential suitability for GPU vectorization. Our focus in the future will be the GPU-porting, and to validate
performance optimization, we opted to address the entire code. This choice is driven by the convenience of
working directly on the code and the complexity associated with isolating each kernel into individual applica-
tions. Employing profilers and/or measuring execution times will streamline the evaluation of our progress. In
particular, Nsight System (integrated with NVTX) is a tool that we are becoming familiar with and that is
proving to be very useful in analyzing the performance of each kernel on the GPU.
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4 BHAC

The Black Hole Accretion Code (BHAC) [7, 8, 9, 10] is a multidimensional General Relativistic Magnetohy-
drodynamics (GRMHD) code that solves the equations of ideal GRMHD in one, two or three dimensions in
order to perform (magneto)hydrodynamical simulations of accretion flows onto compact objects in arbitrary
stationary space-times (Cowling approximation) using an efficient block based approach. BHAC is build upon
the MPI-Adaptive Mesh Refinement-Versatile Advection Code (MPI-AMRVAC). MPI-AMRVAC [11, 12] is a
parallel adaptive mesh refinement framework aimed at solving (primarily hyperbolic) partial differential equa-
tions (PDEs) by a number of different numerical schemes. The framework supports 1D to 3D simulations, in a
number of different geometries (Cartesian, cylindrical, spherical). MPI-AMRVAC is written in Fortran 90 and
uses MPI for parallelization. BHAC is second-order accurate and employs a variety of multi-step Runge-Kutta
schemes to temporally integrate the cell-average of the conserved variables through the computational grid. For
a more detailed description of BHAC see Sec. 6 of [13].

4.1 High-level description of the code

BHAC does both the initialization as well as the advancing of the variables of the governing partial differential
equations (PDE). The main program is in the file amrvac.t and all time advancing actually happens in advance.t.
The input and output routines are in amrio.t and also in the postprocess conversion part collected in convert.t.
The subroutines likely to be modified by the user are to be collected in amrvacusr.t. The explicit temporal
discretizations are in the main advancing module advance.t. A rough scheme of BHAC’s workflow follows:

1 START SIMULATION
2 |
3 | <-------------- readcommandline , readparameters , initialize_vars
4 |
5 READ SNAPSHOT (only for restarts)
6 |
7 INITGLOBALDATA_USR
8 INITGLOBALDATA
9 INITLEVELONE (initialize grid level one)

10 SETTREE (initialize finer grid levels)
11 |
12 TIMEINTEGRATION <------------------
13 | |
14 | --------------> |
15 | | |
16 | | SETDT
17 | | SAVEAMRFILE
18 | | RESETTREE
19 | | ADVANCE <---------|
20 | | | |
21 | ------ no -- | stop? ADVECT <------- loop over grids ---- PROCES1_GRID
22 | | ADD_SOURCE <--- loop over grids ---- ADDSOURCE1_GRID
23 | yes
24 | |
25 | |
26 |<---------------------------
27 |
28 SAVEAMRFILE
29 |
30 END SIMULATION

The main time cycle of BHAC looks like with the Regions 1 and 2 indicated:

1 program bhac
2 ...
3 time_evol : do
4 call extrae_event(base + region1 + iter2 , event_start) <---------------------------------
5 ... |
6 if (it >= itmax) exit time_evol |
7 if (time_accurate .and. t>=tmax) exit time_evol |
8 ... |
9 call extrae_event(base + region2 + iter2 , event_start) <----------- |

10 call advance(it) ! does time integration of all grids on all levels | Region 2 | Region 1
11 call extrae_event(base + region2 + iter2 , event_stop) <----------- |
12 ... |
13 it = it + 1 |
14 if (time_accurate) t = t + dt |
15 ... |
16 call extrae_event(base + region1 + iter2 , event_stop) <---------------------------------
17 end do time_evol
18 end program bhac
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advance() is called until a final time or a specific number of iterations has been reached. advance() calls
advect() which integrates all grids by one full time-step using, in our case, the two stages predictor-corrector
method.

1 subroutine advect ()

2 ...

3 case (" twostep ")

4 call advect1 (...,t ,...) ! predictor step

5 call advect1 (...,t+half*dt ,...) ! corrector step

6 ...

7 end subroutine advect

advect1() integrates all grids by one partial intermediate time-step. advect1() calls advect1 grid() which
integrates one grid by one partial intermediate time-step. In advect1 grid() the primitive reconstruction
happens, the sources are added and the numerical fluxes are computed.

1 subroutine advect1_grid ()

2 ...

3 call primitive () ! primitive reconstruction

4 ...

5 call tvdlf()

6 ...

7 call addsource ()

8 ...

9 end subroutine advect1_grid

4.2 Kernels targeted for optimization

4.2.1 Kernel 1 - Primitive reconstruction

The nonlinear inversion of the conservatives to recover the primitive variables at every time-step is the Achilles
heel of any relativistic (M)HD code and requires the development of sophisticated schemes with multiple backup
strategies. BHAC is no different from other GRMHD codes when it comes to deal with this issue: Two primary
inversion strategies are available in BHAC supplemented by a third one in highly magnetized regions. The first
two inversion methods can fail under different circumstances, and thus the one can act as a backup strategy
for the other. Typically, we first attempt one of them and switch to the other method when no convergence is
found. If both fail to converge, then the third one can act as the next layer of backup. Clearly, depending on
the details of our setup, the primitive reconstruction process can become the most resource-demanding part of
our simulations. This could possibly explain the findings of the profiling performed in deliverable D2.1, where
the main cause that limits parallel efficiency is the poor load balance of the region that contains the primitive
recovery module. It could be possible that the processing units dealing with the highly magnetized areas may
require more effort to complete the primitive recovery process compared to the ones dealing with the weakly
magnetized areas. This workload imbalance results in decreased efficiency and performance of the code.

1 subroutine primitive ()

2

3 ! Transform conservative variables into primitive ones

4 ! (D,S,tau ,B)-->(rho ,v,p,B,lfac ,xi)

5 ...

6 call getaux () ! calculate lorentz factor and (auxiliary variable) xi from conservatives

only

7

8 call primitiven () ! avoid recursive calling by small values

9 ...

10 end subroutine primitive

The conservative to primitive computations could greatly benefit from a GPU offloading, but this task depends
crucially on the possibility of porting the parallel adaptive mesh refinement framework AMRVAC, on top of
which BHAC is build, to GPU.

4.3 Mini-apps description

Because of the structure of BHAC and the fact that, in order to reconstruct the primitives at each time-step,
we need the corresponding values of the conservatives, it is not possible to isolate the primitive() module
from the rest of the code. Therefore, the mini-app will be designed to monitor primitive() through its parent
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4.3 Mini-apps description

module advance(). In this way primitive() will be able to access the updated values of the conservatives
at every time-step guaranteeing the accuracy of our results. For each call of advance(), corresponding to a
full time step, primitive() is called twice, at each intermediate time step, because of the predictor-corrector
method we are using for the time-integration.
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5 ChaNGa

5.1 High-level description of the code

ChaNGa [14][15][16] is an N-body and Smoothed Particle Magneto-HydroDynamics (SPMHD) code which is
used to study a wide array of astrophysical systems. While the gravity and SPMHD algorithms are based on
the gasoline [17] and pkdgrav [18] codes, the unique feature of ChaNGa is it’s implementation of the Charm++
framework, which enables highly efficient parallel scaling. Charm++ employs overdecomposition to achieve
this. That is, divide the work into many more pieces (chares/tree pieces) than you have processors and let the
Charm++ runtime system load balance by appropriately assigning pieces to real processors (see Figure 6 for
an overview). During runtime, Charm++ applies dynamic load rebalancing strategies to determine which tree
pieces should be migrated to new processors for better load balance. In addition, the SMP mode of Charm++
leverages the shared-memory systems found in high-performance computing environments. Within an SMP pro-
cess/node, one thread is assigned as the communication thread, responsible for internode communication, while
the remaining threads act as worker threads in charge of the processing elements. Multiple Shared-Memory
Multiprocessing (SMP) processes can be initiated per network node, the number of which should be based on
the CPU architecture and communication load. Charm++ also provides support to execute CUDA kernels on
the GPU asynchronously and to manage data transfers between the CPU and GPU.

Figure 6: System’s View of a Charm++ Application

The central feature of ChaNGa is a tree-based gravity solver using a variant of the Barnes-Hut algorithm. This
solver is combined with several other features which include: gravitational interaction between dark matter,
stars and gas, Ewald summation to handle cosmological boundary conditions, multi-time stepping, hydrody-
namics, magnetic field and several subgrid physics such as, star formation, feedback from supernova, stellar
winds, black holes and the radiative cooling of gas.

The five major physics algorithms within ChaNGa are in order of computation and communication load (though
this can depend on simulation conditions):

ALG 1 Gravity: Barnes-Hut tree; To compute the gravitational force at any point in space given a specific
mass distribution, we want to solve Poisson’s equation for gravity:

∇2Φ = 4πG

∫
fdv = 4πGρ (7)

Here ∇2 is the Laplace operator, Φ is the gravitational potential, G is the gravitational constant, ρ is the
mass density at each point in space. In an N-body code, the continuous mass distribution is discretized into
a finite number of particles. Instead of directly calculating the gravitational influence that each particle
has on each other, the Barnes-Hut tree approximation is used, where distant particles are combined into
the center of mass of tree cells. This allows one to separate the force calculation into subdivisions of long-
range components (tree/multipole) and a short-range component (direct) to the degree which is required
by the desired force accuracy. For ChaNGa the global tree is then split into N number of tree pieces
(depending on the given overdecomposition) and distributed among all the processors (including different
nodes). Particles, or more specifically, groups of particles contained in the tree leaves (often referred to
as ”buckets”), traverse the tree to compute the gravitational force. This is separated into a local tree
traversal part (tree pieces within an SMP process) and a remote tree traversal part (tree pieces in another
SMP process).
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ALG 2 Smoothed-Particle Magnetohydrodynamics (SPMHD); The governing equations of smoothed par-
ticle magneto-hydrodynamics is given by:

dvia
dt

=
∑
b

mb

ρaρb

(
Sij
a + Sij

b

)
∇j

aWab + Fv,diss, (8)

dua

dt
=

Pa

ρa

∑
b

mb

ρb
(vb − va) · ∇aWab + Fu,diss, (9)

dBa

dt
=

∑
b

mb

ρb

[
Ba(vab · ∇aWab)− vab(Ba · ∇aWab)

]
+ FB,diss + FB,clean (10)

Here a and b are particle indices, v is the velocity, m is the mass, ρ is the density, S is the stress tensor

(Sij = −δij
(
P + B2

2

)
+ BiBj), P is the pressure, Fv,diss is the momentum term of artificial viscosity,

Fu,diss is the heat dissipation term of artificial viscosity, resistivity and thermal diffusion, FB,diss is the
magnetic resistivity and FB,clean is the divergence cleaning function. Where the density (ρ) is given by
the distribution of particles (interpolation points) and the smoothing kernel:

ρa =

Nsmooth∑
b

mbWab (11)

The term Nsmooth represents the number of neighbours that each particle uses for interpolation and is
user-defined (default 64). To find the neighbours a k-nearest neighbors tree traversal is performed.

ALG 3 Feedback + Star formation; Feedback in galaxies refers to the processes by which the energy and
matter output from stars and supermassive black holes influence the surrounding interstellar medium
(ISM) and intergalactic medium (IGM), thereby regulating further star formation and galaxy evolution.
This feedback can be broadly categorized into two types: stellar feedback and AGN feedback. To distribute
the energy output generated from both types of feedback, the tree build is leveraged and a similar k-nearest
neighbors method is performed as for the SPMHD code. The star formation is based on a stellar module
that determines when gas turns into stars/star clusters. It requires local gas properties and the formation
of star particles and deletion of gas particles.

ALG 4 Cosmological boundary/Ewald summation; The key idea here is to replicate the conditions of an
infinite universe within a finite simulation box. One common approach is to use periodic boundary
conditions. In this setup, the simulation box is treated as a cell in a tessellated infinite universe. Objects
that exit one side of the simulation box are re-introduced on the opposite side. This creates a universe
that is effectively infinite for the purposes of the simulation, allowing the study of large-scale structure
without the need for an impractically large computational domain. Ewald summation is used to efficiently
compute long-range interactions in periodic systems. Ewald summation works by dividing the potential
into short-range and long-range components. The short-range component is computed directly in real
space, while the long-range component is computed in Fourier space.

ALG 5 Radiative Cooling; Ionized gas is subject to cooling processes that dissipate the thermal energy through
(collisional excitation and ionization, inverse Compton, recombination and free-free emission). In numeri-
cal simulations, cooling processes are included as source terms in the internal energy equation. These are
set by a so-called cooling function that is determined by the ionization fractions, density and composition
of the gas. Due to the many local properties that affect the ionization rate, we are required to simplify
the calculation to reduce computational cost. As such the ionization rate is only calculated based on a
handful of chemical species and the cooling function uses pre-calculated tables to determine its value. An
effort is being made to improve this in D3.1.

A high-level description of the code has already been given in D2.1, which showcases how each part of the code
is called during a timestep.
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5.2 Kernels targeted for optimization

The three kernels that we will aim to optimize are:

A) Gravity: Remote communication - exploring improvements to all routines involved in remote tree
traversal when performing gravity calculation.

B) SPMHD: Remote communication - similar to the above, but for the routines related to the k-nearest
neighbors tree traversal.

C) SPMHD: GPU offloading - Offloading the computation part of the SPMHD routines to the GPU.

During our performance analysis (D2.1) it became clear that ChaNGa suffers from communication imbal-
ance for highly clustered datasets involving both gravity and SPMHD. The merger simulations run during our
benchmark represent some of the heaviest computation and communication loads for the code. We will prioritize
improving the communication imbalance, as it is a major bottleneck for these kinds of simulations. A further
explanation of the issue and potential solutions follows in Section 5.2.1.

Offloading work to the GPU has been done efficiently in ChaNGa for both gravity and cosmological boundary
algorithms. For gravity, the full local tree walk is performed on the GPU, which includes both building the
interaction lists and processing them. As the local tree walk is the largest computational part of the code, this
significantly offloads the CPUs during a timestep, allowing them to focus on the remote tree walks, leading to
large overlap in remote and local work. Although many efforts have been performed to also offload the remote
tree traversal to GPU [19], it has not performed well with any of the methods developed. The SPMHD part
is the next big computational part that would be useful to offload to the GPU. This would in turn include the
offloading of the feedback routines as this module also applies a k-nearest neighbors tree traversal similar to
that of SPMHD.

We also plan to explore possible enhancements in the vectorization aspect of the ChaNGa code.

5.2.1 Remote communication

Figure 7: Workflow of the local and remote computation. A local traversal is performed for the tree pieces
within the SMP node, while the remaining part of the tree is traversed by requesting communication from
remote tree pieces outside the SMP node. Previously requested tree pieces by the SMP node are temporarily
saved within the SMP Cache Manager.

During profiling, poor performance scaling was seen in the overall time step at high node counts (see more
in D2.1). We attributed this to the communication imbalance produced by the highly clustered dataset. As we
have mentioned before in the Introduction, ChaNGa tries to effectively overlap communication and computation
at all times. Therefore, the tree traversal is separated into local and remote parts (depicted in Figure 7). During
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the time the remote tree traversal has sent out requests and is waiting for responses, the local tree traversal
can be performed, effectively overlapping communication and computation. The issue arises when dealing with
highly clustered simulations, where some tree pieces receive many more requests than others. This substantially
slows down the receiving of messages needed for remote traversal. And even though there is overlap between
communication and computation, there is insufficient local computation to overlap with the extended delay
in receiving messages. This effect is exacerbated as we increase the number of nodes, as this increases the
communication imbalance. We found three potential avenues to resolve and improve this issue:

1. A) Replication of tree pieces- Another solution is to replicate the information about the tree nodes
on multiple processors, which spreads out the communication load and ensures that no single processor
becomes overloaded with messages. This proved to be a successful method to reduce the communication
imbalance in an older version of ChaNGa [20], but does not exist anymore within the main branch of the
ChaNGa code.

2. B) Topological Routing and Aggregation (TRAM) Charm++ module - One potential solution
to communication issues is to investigate the capabilities of Charm++ TRAM module. This module is
designed to automatically aggregate messages and detect collective communication patterns to improve
communication within the Charm++ application.

3. C) Node-wide cache model - Another solution is to improve the cache manager, to reduce communi-
cation volume and improve idle time. Caching the received remote data is an effective way to reduce the
volume of communication. ChaNGa already implements a cache as a table of tree-node data hashed by a
tree-node key. However, these kinds of hash tables are not ideally suited for shared-memory environments.
Since the software cache undergoes frequent updates to accommodate incoming remote requests, parallel
accesses by threads on the process must be thread-safe, which proves to be difficult for hash tables of dy-
namic size. A new shared-memory software cache model for the global tree, was presented by ParaTreeT
[21], which is a node-wide cache model with atomic read and write operations.

5.2.2 Isolation of kernels

Due to the asynchronous nature of Charm++ there are no well-defined boundaries to the different regions.
Functions belonging to different regions are usually scheduled asynchronously by the runtime, and thus different
regions usually blend together. In addition, both the major parts of the code, gravity and SPMHD, relies on
the same domain decomposition and tree build to function. Thus extracting and creating a light mini-app
becomes challenging and not very useful. However, we do have the ability to disable parts of the full code to
isolate certain physics kernels. Such as running only with SPMHD or only with gravity and removing all the
additional subgrid physics. The different scientific cases of D1.1 were chosen, such that it allows us to test the
performance of the kernels both isolated and in combination with other physics modules. The kernel isolation
from the global code is done by the use of preprocessing instructions, which deactivate the parts of the code
not used. In total, there will be five versions used for the scientific cases:

Version 1) Gravity only

Version 2) SPMHD only

Version 3) Gravity + SPMHD

Version 4) Gravity + SPMHD + Feedback + Star formation + Cooling

Version 5) Gravity + SPMHD + Feedback + Star formation + Cooling + Cosmological Boundary

The function of each of these modules is listed in 5.1.
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6 FIL

FIL is a module of the Einstein Toolkit (ET) that solves the General Relativistic Magneto-Hydrodynamic
(GRMHD) equations in 3-dimensions. FIL simulates magnetic fields in dynamical spacetimes, allowing for the
study of binary neutron star and black hole-neutron star mergers. It is written in the C++ programming
language and is parallelized with MPI+OpenMP. Further information on both FIL and the ET can be found
here [22] and here [23], respectively.

6.1 High-level description of the code

The ET is built around the Cactus framework a general framework for the development of portable modular
applications, where programs are split into modules known as Thorns. As mentioned above FIL is a Thorn of the
ET. The Cactus framework acts as the interface between different Thorns. Some important Thorns are; Carpet,
responsible for the adaptive mesh refinement (AMR) grid simulations take place on; Antelope, the space-time
evolution Thorn; method of lines (MoL), provides the numerical time integrators; TOVSolver, integrates the
TOV equations to provide the initial data for the neutron stars; and the Einstein base Thorns, AMDBase,
Hydrobase and TmunuBase define the grid functions1 for the basic space time variables. Respectively the base
Thorns define the 3 metric, the hydrodynamic variables and the stress energy tensor. Having these variables
and more defined by the Einstein base Thorns is key to the Cactus framework. It allows for a clearly defined
interface between different Thorns. Analysis, initial data and evolution Thorns will all be working on the same
well defined grid functions. Antelope, the space-time evolution Thorn, can be used to solve the BSSN, CCZ4
and Z4c formulations of the Einstein’s equations. More can be found on the different formulations here [24].
It is important to understand that FIL evaluates the MHD variables and Antelope evaluates the equivalent
space-time variables, both sets of variables are passed to the method of lines Thorn which evolves both sets
forward in time. Each Thorn has the following directory structure:

/Cactus/arrangements/

ArrangementName/

ThornName/

COPYRIGHT

README

test/

doc/

par/

configuration.ccl

interface.ccl

schedule.ccl

param.ccl

src/

make.code.defn

The COPYRIGHT, README, doc/, test/ and par/ are optional; doc/ will typically be used to store docu-
mentation related to the Thorn, and par/ can have example parameter files for the Thorn. The src/ directory
will store the code of the Thorn as well as the make.code.defn file which tells the ET which files to compile.
FIL’s source code can be found in the Relastro dev/IllinoisGRMHD/ directory. The .ccl files are the files which
directly interact with the cactus framework. The configuration.ccl file contains inter-Thorn build dependencies
and is optional; interface.ccl defines Thorn-wide variables, grid functions and shared functions; param.ccl de-
fines all parameters and sets their default values and schedule.ccl takes care of all the function scheduling and
controls the global storage of all grid functions.

For a full description of the algorithm FIL uses, see section 7.3 in D2.1, what follows is a brief description of
the key elements. To evolve the MHD variables the system of ideal MHD equations is written in flux conservation
form:

∂tU+ ∂iF
i = S (12)

1Grid functions are functions that are discretized and stored at every point on the grid.
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Where U is the vector of conserved variables, F is the physical fluxes into a volume element and S are the source
terms within a given volume element. The conserved variables have no physical meaning they are constructed
from the primitive variables which correspond to physical quantities such as density, pressure, magnetic field
strength etc. FIL evaluates the conservative variables, not the primitives, at each substep of the 4th order
Runge Kutta routine (RK4) provided by the MoL thorn. To perform the substeps the source and the flux terms
in equation 12 need to be evaluated. This is done by the Illinois GRMHD driver evaluate MHD RHS type

function. During a time step the primitive variables need to be recovered from the conservative variables
multiple times. The conservatives are related to the primitive variables by a non linear set of equations. To
recover the primitive variable’s a Newton–Raphson-based root finder is needed to recover the primitive variables.
The algorithm for recovering the primitive varibales is found in the illinoisGRMHD conserv to prims function.
At the start of each run of FIL the Cactus schedule is outputted: a complete list of every function, the order
it is called in and some of the program structure such as loops. Bellow is an edited version of the scheduler
output where effort has been made to reduce the size considerably and slight modifications have been made for
the ease of reading.

1 ##################################################

2 #Initialisation of grid

3 ##################################################

4 Carpet :: MultiModel_Startup #Init AMR grids

5 Antelope :: MultiModel_Startup #Register Antelope with CoordGauge

6 Antelope :: Antelope_Select_System #Register evolution system for the

space -time

7 CartGrid3D :: RegisterCartGrid3DCoords #Register coordinates for the

Cartesian grid

8

9 ##################################################

10 #Calculate initial data

11 ##################################################

12 Margherita_EOS :: Margherita_setup_polytrope #Setup piecewise polytropic EOS.

13 ADMBase_InitialData #ADMBase initial data

14 Hydrobase :: HydroBase_Initial #HydroBase initial data

15 TOVSolver :: TOV_C_Integrate_RHS #Integrate the 1d equations for the

TOV star

16 TOVSolver :: TOV_C_Exact #Set up the 3d quantities for the TOV

starr

17 Seed_Magnetic_Fields_BNS :: Seed_Magnetic_Fields_Privt #Set up binary neutron star seed

magnetic fields.

18 TmunuBase :: SetTmunu #Calculate the stress -energy tensor

19 Antelope :: Antelope_MoLRegister #Register the evolution variables with

MoL

20

21 Boundary :: BoundaryConditions #Set up boundary conditions

22

23 ##################################################

24 Main time loop

25 ##################################################

26

27

28 BNSTrackerGen :: BNSTrackerGen_Track_Stars #Track the stars position

29

30 do loop over time steps:

31 BNSTrackerGen :: BNSTrackerGen_Move_Grids #Update positions of refined regions

32 CartGrid3D :: SpatialCoordinates #Set Coordinates after regridding

33

34 do loop over refinement levels:

35 Extrae_event(Region_0 , 1)

36 do loop over MoL substeps #The RK4 method has 4 sub steps

37 MoL:: MoL_StartStep: MoL #Internal setup for the evolution step

38 MoL:: MoL_AllocateScratch #Allocate sufficient space for scratch

variables

39 MoL:: MoL_InitRHS #Initialise the RHS functions

40 Antelope :: Antelope_CalcFD #Computing RHS for spacetime evolution

41

42 Extrae_event(region_1 , 1)

43 IllinoisGRMHD :: IllinoisGRMHD_RHS_eval #Evaluate RHSs of GR Hydro & GRMHD

equations

44 Extrae_event(region_1 , 0)

45
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46 MoL:: MoL_PostRHS #Modify RHS functions

47 MoL:: MoL_Add #Updates calculated with the Runge -

Kutta 4 method

48 MoL:: MoL_DecrementCounter #Alter the counter number

49

50 Boundary :: BoundaryConditions #Execute all boundary conditions

51 IllinoisGRMHD :: IllinoisGRMHD_compute_B_and_Bstagger_from_A

52 #Compute B and B_stagger from A

53 Extrae_event(region_2 , 1)

54 IllinoisGRMHD :: IllinoisGRMHD_conserv_to_prims

55 Extrae_event(region_2 , 0)

56

57 IllinoisGRMHD :: IllinoisGRMHD_outer_boundaries_on_P_rho_b_vx_vy_vz

58 #Apply outflow -only , flat BCs on {P,rho_b ,vx,vy ,vz}.

59 Extrae_event(Region_0 , 0)

6.2 Kernels targeted for optimization

6.2.1 Kernel 1 - Carpet

The ET is the evolution framework that FIL uses, it controls the AMR grid the simulations are done on as
well as provide other routines for the running of the simulations. The precursor to FIL, IllionisGRMHD, was
originally evolution framework agnostic. However over subsequent iterations IllinoisGRMHD became more and
more dependent on the ET, by the time FIL was developed the ET was the only evolution framework that FIL
could use. The profiling showed that the ET was the main cause of slowdown, poor scaling and load balancing
issues which had a knock on effects on the other kernels. One key question is whether FIL will continue to use
the ET as its evolution framework. When it comes to accelerating the performance of FIL one of the key areas
of interest is the AMR grid controlled by Carpet. The developers of the ET are looking to release CarpetX
late 2024 which will be GPU accelerated, however initial results do not show the acceleration one would expect.
There are other AMR grids such as AMReX that have already been released and are GPU compatible that are
of interest, however porting FIL to a different framework will be a significant task. More investigation into the
particular areas of poor performance from the ET is hence required.

6.2.2 Kernel 2 - Driver evaluate MHD RHS

The Illinois GRMHD driver evaluate MHD RHS type function is called at each sub step of the RK4 method.
The driver is responsible for evaluating the flux (MHD) and the source (RHS) in equation 12. To this end, the
driver performs successive calls to several functions. The most time consuming functions are:

• compute tau rhs extrinsic curvature terms and TUPmunu, which calculates the extrinsic curvature used
to evaluate the source term;

• reconstruct set of prims WENO5, which reconstructs the primitive variables at the cell faces to calculate
the primitive variables vector flux in each direction;

• and add fluxes and source terms to hydro rhss, which takes the calculations from the other two func-
tions and evaluates the flux and source terms.

The Illinois GRMHD driver evaluate MHD RHS type function has been chosen for optimisation as it takes
the longest amount of computational time of all the FIL routines and as it is a purely computational kernel it
is a good candidate for SIMD vectorization. GPU acceleration will also be explored.

6.2.3 Kernel 3 - Conservative to primitive solver

As mentioned in section 6.1 the calculation of primitive variables from the conservative is not a trivial task and re-
quires the use of a 2D Newton-Raphson root-finding algorithm, implemented in the IllinoisGRMHD conserv to prims

function. Because of truncation and interpolation errors, calling the 2D Newton-Raphson solver naively may
incur unphysical results. To prevent this, the IllinoisGRMHD conserv to prims function performs a series of
checks to make sure the conservative variables are in a valid range before the root finder is called. If the conser-
vative values are outside of this range they are minimally modified. Sometimes the root finder will still fail to
find a root, this is very rare and almost always occurs in a low-density environment, such as the atmosphere of
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a neutron star or the interior of a black hole. In such cases the pressure is manually set to guarantee inversion.
Once the primitives are successfully calculated, they are checked for physicality (make sure fluid speed remain
sub-liminal for example) and the evolution algorithm can continue. Again as this kernel is purely a computa-
tional kernel, it is a good candidate for GPU acceleration as well as SIMD vectorization. The conservative to
primitive solver was found to be a fairly small section of the overall compute time during the profiling however
it is felt that this kernel will become a more significant part of the compute time in regions with high magnetic
fields which were not present in the profiling.

6.3 Mini-apps description

Due to the structure of FIL and its coupling to the ET it is not possible to extract the kernels of interest
because all kernels depend in multiple ways on the others. Therefore, the mini app will be designed to monitor
the kernels of interest via the ScheduleTraverse function which runs the main time loop and contains the
AMR grid, the evaluate MHD and RHS function, and the conservative to primitive solver.

Page 26 of 41
This document is Public (PU)

and was produced under SPACE project EU GA 101093441



D1.2 – Code Modules and Kernels

7 iPic3D

7.1 High-level description of the code

iPic3D is a semi implicit Particle in Cell code developed in C++ to study various phenomena that are observed
in collisionless space plasma.

The core of the code is encapsulated within the iPic3D::c Solver class, here instantiated as KCode. The
simulation workflow begins with initialization (Init method), where the solver is configured based on the pro-
vided command-line arguments (argc, argv). This initialization includes setting up the computational domain,
initializing physical parameters, and preparing the simulation environment.

1 #include <iomanip >

2 #include "iPic3D.h"

3

4 using namespace iPic3D;

5

6 int main(int argc , char **argv) {

7

8 iPic3D :: c_Solver KCode;

9 bool b_err = false;

10

11 /* ------------------------------ */

12 /* 0- Initialize the solver class */

13 /* ------------------------------ */

14

15 KCode.Init(argc , argv);

16 KCode.InjectBoundaryParticles ();

17 KCode.GatherMoments ();

18

19 /* ------------ */

20 /* 1- Main loop */

21 /* ------------ */

22

23 for (int i = KCode.FirstCycle (); i <= KCode.LastCycle (); i++) {

24

25 if (KCode.get_myrank () == 0) cout << " ======= Cycle " << i << " ======= " << endl;

26

27 /* ----------------------------------------------------- */

28 /* 2- Calculate fields and move particles */

29 /* Exit if there is a memory issue with the particles */

30 /* ----------------------------------------------------- */

31

32 KCode.UpdateCycleInfo(i);

33 KCode.CalculateField ();

34

35 b_err = KCode.ParticlesMover ();

36

37 if (!b_err) KCode.CalculateBField ();

38 if (!b_err) KCode.GatherMoments ();

39 if ( b_err) i = KCode.LastCycle () + 1;

40

41 /* --------------- */

42 /* 3- Output files */

43 /* --------------- */

44

45 KCode.WriteOutput(i);

46 KCode.WriteConserved(i);

47 KCode.WriteRestart(i);

48

49 }

50

51 KCode.Finalize ();

52

53 return 0;

54 }

Listing 1: High level structure of iPic3D

After initialization, the code injects boundary particles (InjectBoundaryParticles) and gathers initial mo-
ments (GatherMoments). The initialization procedures first set up the foundational simulation infrastructure,
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including allocating memory for the spatial grid and particle arrays, initializing the timestep counters, parsing
input parameters to set the domain decomposition and resolution, and generating the initial conditions for
the electromagnetic fields and plasma particles based on analytic functions or Restart files. Critical kernels
also inject new plasma particles at the boundary surfaces to maintain appropriate particle influx and execute
high-performance interpolation operations to accumulate charge density, current density, and pressure tensor
attributes from the discretized particles onto the defined grid points for the field solve.

The main loop of the simulation iterates over a predefined number of cycles (time steps), as determined
by the FirstCycle and LastCycle methods of the KCode object. The main simulation loop progresses over
a series of discrete timesteps. Each cycle first invokes the field solver module, which numerically integrates
Maxwell’s equations using a finite-difference time-domain method to advance the electric and magnetic field
values defined on the grid based on the charge density, current density, and constitutive electromagnetic relations.
The subsequent particle pusher module computes the Lorentz force for each simulation macroparticle based on
interpolation of the updated grid fields and integrates the equation of motion to determine their new positions
and velocities. Additional sub-steps recalculate current density from the particle momenta, re-solve magnetic
differential equations, and collect charge density and current density by finite-size particle-in-cell weighting
operations.

Each iteration of the main loop involves several key steps: updating cycle information (UpdateCycleInfo),
calculating the electromagnetic field (CalculateField), moving the particles based on the newly calculated fields
(ParticlesMover), and recalculating the magnetic field (CalculateBField). The ParticlesMover function is par-
ticularly critical as it updates the positions and velocities of the particles based on the fields and can return an
error flag (b err) if there is a memory issue. If such an error occurs, the loop is prematurely terminated.

Interspersed I/O routines output detailed electromagnetic field and particle states in a consistent format,
along with diagnostic metrics tracking energy conservation. Restart dumps provide contingency against dis-
ruption while post-processing tools generate visualizations. This overall workflow produces a self-consistent
kinetic approximation of plasma microphysics by the interaction of discrete particles with continually updated
electromagnetic fields.

7.2 Kernels targeted for optimization

7.2.1 Kernel 1 - Gather Moments

1 void c_Solver :: GatherMoments (){

2 // timeTasks.resetCycle ();

3 // interpolation

4 // timeTasks.start(TimeTasks :: MOMENTS);

5

6 EMf ->updateInfoFields(grid ,vct ,col);

7 EMf ->setZeroDensities (); // set to zero the densities

8

9 for (int i = 0; i < ns; i++)

10 part[i]. interpP2G(EMf , grid , vct); // interpolate Particles to Grid(Nodes)

11

12 EMf ->sumOverSpecies(vct); // sum all over the species

13 //

14 // Fill with constant charge the planet

15 if (col ->getCase ()==" Dipole ") {

16 EMf ->ConstantChargePlanet(grid , vct , col ->getL_square (),col ->getx_center (),col ->

gety_center (),col ->getz_center ());

17 }

18

19 // EMf ->ConstantChargeOpenBC(grid , vct); // Set a constant charge in the OpenBC

boundaries

20

21 }

This C++ function GatherMoments() is part of iPic3D specifically developed for calculating and updating
physical quantities (moments) based on particle data. The function begins by updating field information with
EMf-¿updateInfoFields(grid, vct, col), which likely involves preparing electromagnetic fields and other relevant
physical properties for the current simulation state. This is followed by resetting the densities to zero with
EMf-¿setZeroDensities(), preparing for fresh calculations in the current cycle.

The core computational task in this function is the loop over species (for (int i = 0; i ¡ ns; i++)), where
part[i].interpP2G(EMf, grid, vct) is called. This method represents the interpolation of particle properties (such
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as charge and current densities) into the grid nodes, a crucial step in PIC simulations. This interpolation is
computationally intensive as it involves processing potentially large numbers of particles and mapping their
properties onto a spatial grid, a task that requires significant computation, especially for high-resolution grids
or large particle counts. This is evident from the profiling done in D2.1.

After interpolation, EMf-sumOverSpecies(vct) aggregates these interpolated values across all particle species,
which is essential for calculating net densities and currents on the grid. Additionally, there is a conditional block
for handling a specific case (Dipole), which adds a constant charge to a planet model, suggesting a specialized
scenario within the simulation framework.

Given the nature of these operations, especially the particle-to-grid interpolation and the summing over
species, this function is likely a significant contributor to computational time in the overall simulation, as
evident from profiling. These operations are both data- and computation-intensive, involving multiple passes
over potentially large arrays representing particles and grid nodes. Thus, we chose this as a kernel.

Regarding GPU offloading, this function is indeed a good candidate. The particle-to-grid interpolation
and density summation are parallelizable tasks since they involve operations over independent particles or grid
nodes. GPUs, with their high parallel processing capabilities, are well-suited for such tasks. Offloading these
computations to a GPU could significantly accelerate the simulation by leveraging the GPU’s ability to handle
many operations simultaneously, especially beneficial when dealing with large-scale simulations characteristic
of plasma physics.

7.2.2 Kernel 2 - Particle Mover

1 bool c_Solver :: ParticlesMover () {

2

3 /* -------------- */

4 /* Particle mover */

5 /* -------------- */

6

7 // timeTasks.start(TimeTasks :: PARTICLES);

8 for (int i = 0; i < ns; i++) // move each species

9 {

10 // #pragma omp task inout(part[i]) in(grid) target_device(booster)

11 mem_avail = part[i]. mover_PC_sub(grid , vct , EMf); // use the Predictor Corrector scheme

12 }

13 // timeTasks.end(TimeTasks :: PARTICLES);

14

15 if (mem_avail < 0) { // not enough memory space allocated for particles: stop the

simulation

16 if (myrank == 0) {

17 cout << "*************************************************************" << endl;

18 cout << "Simulation stopped. Not enough memory allocated for particles" << endl;

19 cout << "*************************************************************" << endl;

20 }

21 return (true); // exit from the time loop

22 }

The provided module ParticlesMover() is a critical component of iPic3D code primarily responsible for updating
the position and velocity of particles based on the electromagnetic fields. The computational intensity of this
function is significant as it involves complex operations for each particle in the simulation. The motion update
typically requires evaluating the electromagnetic forces acting on the particles and then updating their states ac-
cordingly. Given that simulations can involve a large number of particles, this process becomes computationally
demanding. This is clearly evident from the profiling of the code.

Regarding its suitability for GPU offloading, ParticlesMover is indeed an excellent candidate. The nature
of particle updates, where each particle’s movement can be computed independently of others, lends itself well
to parallelization. GPUs, with their ability to handle thousands of simultaneous threads, can significantly
accelerate this process. By offloading the particle movement computations to a GPU, each thread can handle
the update for a single particle or a small group of particles, leading to a substantial reduction in computation
time.

7.2.3 Kernel 3 - Calculate Field

1 void c_Solver :: CalculateField () {
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2

3 // timeTasks.resetCycle ();

4 // interpolation

5 // timeTasks.start(TimeTasks :: MOMENTS);

6

7 EMf ->interpDensitiesN2C(vct , grid); // calculate densities on centers from nodes

8 EMf ->calculateHatFunctions(grid , vct); // calculate the hat quantities for the implicit

method

9 MPI_Barrier(MPI_COMM_WORLD);

10 // timeTasks.end(TimeTasks :: MOMENTS);

11

12 // MAXWELL ’S SOLVER

13 // timeTasks.start(TimeTasks :: FIELDS);

14 EMf ->calculateE(grid , vct , col); // calculate the E field

15 // timeTasks.end(TimeTasks :: FIELDS);

16

17 }

The module CalculateField() function in the iPic3D code is designed to calculate the electric field. The
presence of MPI Barrier(MPI COMM WORLD) shows the synchronization among different processes in a par-
allel computing environment, ensuring that all processes reach this point before proceeding, which is essential
for consistent and accurate field calculations across the computational domain. The profiling of the code shows
that this function is also a significant contributor to the total computation time in the simulation. Field cal-
culation, especially in three-dimensional simulations with fine grids or complex geometries, requires substantial
computational resources.

With respect to GPU offloading, this function is a promising candidate. The computation of electromagnetic
fields, particularly the solution of Maxwell’s equations over a grid, can benefit greatly from parallel processing.

7.3 Mini-apps description

Given the intricacies of particle-in-cell (PIC) simulations, it is indeed challenging to compartmentalize the
simulation process into separate mini-applications, especially considering the inter-dependencies and sequen-
tial nature of the core computational routines / kernels- ParticlesMover, GatherMoments, and CalculateField.
In GatherMoments, the properties of the particles are interpolated onto the grid, a process essential for
calculating aggregate physical quantities like charge and current densities. These densities are then used in
CalculateField to update the electromagnetic fields via Maxwell’s equations. Subsequently, ParticlesMover
uses these updated fields to advance the particles in time and space. This sequence of operations is not just lin-
ear but also cyclic, as the outcome of the particle movement again influences the next cycle’s moment gathering
and field calculations.

Creating separate mini-applications for each of these kernels would disrupt this critical sequence, as each
mini-app would operate in isolation, lacking access to the dynamically updated data from the other parts of the
simulation. This separation would lead to inconsistencies and inaccuracies in the simulation results. Therefore,
a more feasible approach is to encapsulate these kernels within a single mini-application. This unified approach
ensures that the data flow and dependencies among the kernels are maintained, preserving the integrity and
accuracy of the simulation. The mini-app can still focus on optimizing and studying these kernels, but within
a cohesive framework that reflects the interconnected nature of PIC simulations.
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8 Ramses

RAMSES [25, 26] is an Adaptive-Mesh-Refinement (AMR) code which is used to study astrophysical fluid
dynamics and the formation of structures in the Universe. It is based on an oct-tree structure, where parent
cells are refined into children cells on a cell-by-cell basis following some user-defined criteria. RAMSES can deal
with 1D, 2D and 3D Cartesian grids.

For hydrodynamics, RAMSES integrates the equations of fluid dynamics in their conservative form. This
system can be written in the canonical form

∂U
∂t

+∇ · F(U) = S(U). (13)

Here the vector U = (ρ, ρu, E) contains the conservative variables: density ρ, velocity u, and total energy
E = e + 1/2ρu2 with e the internal energy. The flux vector F(U) = (ρu, ρu ⊗ u + P I,u (E + P )) is a linear
function of U, and uses the primitive variables ρ, u and pressure P . S(U) represents the source terms, e.g. the
gravitational force contribution. This system is closed using a perfect gas equation of state e = P/(γ − 1) with
γ the adiabatic index.

RAMSES uses an explicit second-order predictor-corrector finite-volume Godunov scheme to integrate the
conservative system of equations. The hydrodynamic solver consists of computing flux at cell interfaces, includ-
ing coarse-to-fine and fine-to-coarse interfaces. The discretized scheme goes as (here in 1D for simplicity)

Un+1
i − Un

i

∆t
× Vi = Fn+1/2

i+1/2 Si+1/2 − Fn+1/2
i−1/2 Si−1/2, (14)

where Un
i is the state variable U at time n averaged in cell i of volume Vi, Fn+1/2

i−1/2 is the flux at the interface

of surface Si−1/2 between cells i and i − 1, computed using a linear Riemann solver. The initial values of the
Riemann problems are obtained from the primitive variables of cells i− 1 and i, extrapolated in time and space
at the interface in the predictive step. Altogether, the scheme follows the same steps as in the PLUTO code.

RAMSES can also handle the evolution of particles, such as stars, Dark Matter (DM) and sink particles,
whose evolution is integrated using a Cloud-in-Cell (CIC) interpolation. The same CIC interpolation is used to
deposit the mass of the particles onto the grid to solve for the gravitational potential. For gravity, RAMSES
can either use a Conjugate Gradient algorithm or a multigrid solver [27]. For each solver, the gravitational
potential is solved level-by-level. The time integration can be also accelerated using the adaptive-time-step im-
plementation, in which each AMR level ℓ evolves with its own time-step which satisfies a global synchronization
point at the end of the coarser time-step ∆tℓmin = 2ℓmax∆tℓmax .

RAMSES uses adaptive time integration, where each AMR level is evolved with its own Courant-based
timestep, over which the next finer level is recursively subcycled twice and all levels are synchronized after the
coarsest timestep.

8.1 High-level description of the code

At launch, RAMSES first performs the initialisation of the grid, then load balancing into the MPI domains,
and the initialisation of the hydrodynamics quantities. Each MPI process handles its own region but needs to
know the hydrodynamical values of its neighboring MPI domain. This is done using ghost regions. After this
initialization, RAMSES calls the main routine to perform the time integration.

The heart of the RAMSES code is the recursive routine amr step, which handles the AMR hierarchy from
the finer to the coarser levels. Inside amr step, the state of the vector U at time n is copied from the global
vector uold into the temporary global vector unew. Then, the values of the vector U are updated in every cell
to time n+ 1 by the second-order Godunov solver in the subroutine godunov fine using the pre-state uold to
update the post-state unew. After hydrodynamic update, MPI domains need to share their updated values to
their neighboring MPI domains. This is done in the make virtual reverse and make virtual fine routines,
which employ asynchronous point to point MPI communications. After this, all MPI processes are synchronized,
unew is copied back into uold and the next iteration can start with the updated uold vector.

1

2 program ramses

3 istep=0

4 call init_amr ()

5 call init_hydro ()
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6 call load_balancing ()

7 do

8 call amr_step(istep ,levelmin ,0)

9 istep=istep +1

10 end do

11 end ramses

12

13 !--------------------------------------------------

14 recursive subroutine amr_step(istep ,ilevel ,icount)

15

16 ! Build communication patterns and refine cells flagged for refinement

17

18 if(poisson)then

19 ! Compute the density field at level ilevel using

20 ! the CIC scheme

21 call rho_fine(ilevel) ! Poisson source term

22 endif

23

24 !---------------

25 ! Gravity update

26 !---------------

27 if(poisson)then

28 ! Compute gravitational potential

29 if(multigrid) then

30 call multigrid_fine(ilevel)

31 else

32 call phi_fine_cg(ilevel)

33 end if

34

35 ! Compute gravitational acceleration on the grid cells

36 call force_fine(ilevel ,icount)

37

38 ! Synchronize particles for gravity

39 if(pic)then

40 call synchro_fine(ilevel)

41 end if

42 end if

43

44 call set_unew(ilevel)

45

46 if(ilevel <nlevelmax)then

47 call amr_step(istep ,ilevel +1,0) ! 1 child amr_step

48 else if ...

49 call amr_step(istep ,ilevel +1,0) ! 2 child amr_step

50 call amr_step(istep ,ilevel +1,1)

51 else

52 ! nothing , continue processing

53 end if

54

55 call compute_godunov(ilevel)! Hydro solver

56

57 call make_virstual_reverse(ilevel) ! Update direct MPI neighbors

58

59 call set_uold(ilevel)

60

61 if(pic)then

62 call move_fine(ilevel) ! Move particles

63 end if

64

65

66 call make_virtual_fine(ilevel) ! Send new states to MPI neighbors ghost regions

67

68

69 if ...

70 stop ! exit application

71 end if

72

73 end subroutine amr_step

Listing 2: High level structure of RAMSES
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D1.2 – Code Modules and Kernels

8.2 Kernels targeted for optimization

The first set of kernels we have selected is based on the performance measurements we obtained in D2.1. They
correspond to the main time-consuming parts of the code for this test with hydro and MPI communications.
Then we identified the kernels for the particle-grid interaction (CIC interpolation). These kernels share the same
structure as many other kernels in RAMSES. Once a good strategy of optimization is found for the selected
kernels, it will be propagated to the other similar ones. This list can be updated throughout the duration of
the project once other use cases are properly benchmarked.

8.2.1 Kernel 1 - Hydrodynamical solver

Kernel 1 corresponds to the predictor-corrector Godunov solver (equation 14). This is a computational step,
without I/O or MPI communication. It corresponds to the core of the hydrodynamical kernel, which can be
extended to the MHD case, as well as radiative transfer. RAMSES uses an unsplit scheme, so that all directions
are treated in a single call to the Godunov solver. Each cell of the computational domain is scanned using loops
with a low level of internal vectorization. Octs, i.e., groups of 2Ndim cells, with Ndim the number of dimensions,
are first gathered into groups of size nvector and then sent to the main routine of the Godunov kernel. The
size nvector is an input parameter, its optimal value depending on each architecture. Finding optimal nvector
values is a first basic optimization that we can perform.

1 subroutine godunov_fine(ilevel)

2 ! Loop over active grids by vector sweeps

3 ncache=active(ilevel)%ngrid

4 do igrid=1,ncache ,nvector

5 do i=1,ngrid

6 ind_grid(i)=active(ilevel)%igrid(igrid+i-1)

7 end do

8 call godfine1(ind_grid ,ngrid ,ilevel) ! hydro update on nvector groups of $3^{Ndim}$ octs

9 end do

10 end subroutine godunov_fine(ilevel)

Listing 3: Basic vectorisation loop in the Kernel 1

From D2.1 results on the first benchmarks, we observed that this region is well optimized on CPU archi-
tectures. The challenge now is to port this code to advanced hardware platforms, focusing on different types
of GPU accelerators or ARM processors with potentially longer vector lanes (SVE). Note that this strategy for
vectorization (do igrid=1,ncache,nvector) is employed in more than 90 loops in various parts of the RAM-
SES code where AMR cells are scanned, for example, to compute the gravitational potential, the conversion of
gas into stars or stellar feedback. Therefore, any improvement might result in an important optimization of a
significant portion of the code.

8.2.2 Kernel 2 & 3 - MPI communications for the synchronization of the variables

Kernels 2 & 3 correspond to MPI communications between MPI domains. We gather them since they have
the same global structure and communication patterns. Kernel 2, make virtual fine, represents a direct
communication of the updated states, like hydrodynamical quantities, from one process to its neighbors. Once
the global update is completed (hydro, gravity, feedback, etc...) and all values in the computational domain
are synchronized in time, the new hydrodynamical states have to be communicated between the domains ghost
regions in order to proceed to the next iteration. Only ghost regions are affected by this communication.

Kernel 3, make virtual reverse, is the most tricky and constraining communication between MPI processes
in RAMSES. For instance, once all the hydrodynamical fluxes have been computed in kernel 1, the hydrodynam-
ical fluxes between neighboring MPI domains have to be communicated to update the hydrodynamical states.
This is done to avoid computing a flux twice at level cell interfaces (only the flux on the right face of a cell is
calculated). Kernel 3 consists of updating an MPI process from its direct neighbors. It has to be optimized
carefully, in particular to guarantee total energy conservation and when adaptive time steps are used since cells
at a coarser level should not evolve in the sequence of two consecutive time steps at the finer level.

These two kernels are currently the principal bottleneck regarding performance scaling when the number of
MPI processes is too large: the ratio of the surface of the boundary region versus the size of the MPI domain
increases, and too much time is spent on MPI communication. The regions contain asynchronous (Isend and
Irecieve) communication operations and the MPI Waitall operation which is also sensitive to the load balancing
between MPI domains. The following is a summary of the high-level code structure of these kernels.
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1 subroutine make_virtual_fine(xx,ilevel)

2 ! -------------------------------------------------------------------

3 ! This routine communicates virtual boundaries among all cpu ’s.

4 ! at level ilevel for any double precision array in the AMR grid.

5 ! -------------------------------------------------------------------

6

7 ! Receive all messages

8 countrecv =0

9 do icpu=1,ncpu

10 ncache=reception(icpu ,ilevel)%ngrid

11 countrecv=countrecv +1

12 call MPI_IRECV(reception(icpu ,ilevel)%u,ncache*twotondim , &

13 & MPI_DOUBLE_PRECISION ,icpu -1,tag ,MPI_COMM_WORLD ,reqrecv(countrecv),info)

14 end do

15

16 ! Gather emission array

17 do icpu=1,ncpu

18 emission(icpu ,ilevel)%u=xx(emission(icpu ,ilevel)

19 end do

20

21 ! Send all messages

22 countsend =0

23 do icpu=1,ncpu

24 call MPI_ISEND(emission(icpu ,ilevel)%u,ncache*twotondim , &

25 & MPI_DOUBLE_PRECISION ,icpu -1,tag ,MPI_COMM_WORLD ,reqsend(countsend),info)

26 end do

27

28 ! Wait for full completion of receives

29 call MPI_WAITALL(countrecv ,reqrecv ,statuses ,info)

30

31 ! Scatter reception array

32 do icpu=1,ncpu

33 xx(reception(icpu ,ilevel)=reception(icpu ,ilevel)%u

34 end do

35

36 ! Wait for full completion of sends

37 call MPI_WAITALL(countsend ,reqsend ,statuses ,info)

38

39 end subroutine make_virtual_fine

Listing 4: MPI communications to update ghost regions of neighboring MPI domains

These kernels have been selected for their potential optimization of MPI communication and load balancing.
The first proposed optimization is on the intra-node communications. Second, we will evaluate the MPI3
standard to improve overlapping of communication and computation. Then, a sorting of the octs in MPI
domains is envisioned in order to separate internal octs, i.e. the ones that do not share a common boundary
with another MPI process, and boundary octs. This last optimization will affect not only kernels 2 and 3 but
also the calls to kernel 1, so it will be difficult to evaluate the degree of optimization without running the three
kernels in the same use case.

8.2.3 Kernel 4 - Particle-mesh interaction

Kernel 4 corresponds to the mass deposition from particles (stars, dark matter) onto the grid, using the cloud in
cell (CIC) method, prior to the computation of the gravitational potential. It is a testbed for the optimization
of the particle-mesh interaction kernels (not all use CIC), used, for instance, to move particles, to convert gas
into stars or to apply star formation feedback. Kernel 4 is called within the rho gine(ilevel) routine which
also integrates calls to kernels 2 and 3.

1

2 subroutine rho_fine(ilevel)

3

4 !------------------------------------------------------------------

5 ! This routine computes the density field at level ilevel using

6 ! the CIC scheme.

7 !-------------------------------------------------------

8

9 ! Compute density due to current level particles

10 if(pic)then
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11 call rho_from_current_level(ilevel)

12 end if

13 ! Update boudaries

14 call make_virtual_reverse(rho(1),ilevel)

15 call make_virtual_fine (rho(1),ilevel)

16

17 end subroutine rho_fine

18 !##############################################################################

19 !########################################################

20 subroutine rho_from_current_level(ilevel)

21 !------------------------------------------------------------------

22 ! This routine computes the density field at level ilevel using

23 ! the CIC scheme from particles

24 !------------------------------------------------------------------

25

26 ! Loop over cpus

27 do icpu=1,ncpu

28 ! Loop over grids

29 do jgrid=1,numbl(icpu ,ilevel)

30 npart1=numbp(igrid) ! Number of particles in the grid

31 do jpart=1,npart1

32 ip=ip+1

33 if(ip== nvector)then

34 !------------------------------------------------------------------

35 ! Compute the density field at level ilevel using

36 ! the CIC scheme on groups of nvector particles

37 !------------------------------------------------------------------

38 cic_amr(ind_cell ,ind_part ,ind_grid_part ,x0ig ,ip,ilevel)

39 end if

40 end do

41 ! End loop over particles

42 end do

43 ! End loop over grids

44 end do

45 ! End loop over cpus

46

47 end subroutine rho_from_current_level

Listing 5: High level code structure for the CIC interpolation of the particles mass onto the grid

Like kernel 1, this kernel is well optimized on CPU architectures, hence the challenge is the same: porting
this code on advanced hardware platforms. Note that the same strategy for vectorization is also employed for
the particle loops. This loop is present in more than 20 places in the entire code where the particles are scanned.
Therefore, any improvement might result in an important optimization of a significant portion of the code.

8.3 Mini-apps description

RAMSES is a big code consisting of about 90 thousand lines, with a lot of physics included and a high entan-
glement of fundamental kernels in each of the physical modules. Indeed, many of the developments have been
done through copy-paste of the main features and loops of the aforementioned kernels. As such, it is not easy to
create light-isolated mini-apps. We will isolate the kernels from the global code using preprocessing instructions
and conditional instructions which deactivate the parts of the code that are not used. Then we will extract the
core parts of the kernels, which will be identified thanks to a fine grain performance analysis. Once a significant
optimization of the kernels is reached, we will progressively implement it in all the parts of the code that share
the same basis as the four kernels we selected.
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9 Modules interoperability across codes

The interoperability of scientific codes is a highly advisable goal for every community targeting a class of prob-
lems in science, and it should be promoted as a standard practice.
Using community-developed kernels across codes or pipelines owned by different groups may offer the advantage
of a larger user community and more intensive and extensive tests on a larger variety of conditions, besides
reducing the total time spent in development because of the smaller redundancy.

From a broad perspective, it is possible to individuate two types of “modules”: those that either do or do
not need to interact with the peculiar data structures of a code. The modules that perform specific operations
on/from a subset of variables could be more easily engineered as inter-operable and re-usable, for instance, in
the form of libraries called from within the codes. A prominent example of that is the linear algebra. In the
domain of this project, typical candidates are all calculations made on the value of the variables of a single
resolution element (RE, either a particle or a cell). Valid examples are a star-formation algorithm that decides
whether the gas in a resolution element will form stars or not or a cooling function that determines the energy
loss only based on the values of physical properties available at the moment of calculation.
On the other hand, operations that tightly interact with the backbone of a code, for instance, the domain
decomposition, are more difficult to be extracted and offered as inter-operable modules.

Within SPACE, two broad categories of codes are included: fluid- (or mesh-) based codes (PLUTO, BHAC,
FIL & RAMSES) and particle-base codes (CHANGA and OpenGadget). By the nature of their fundamental
algorithms, these two classes of codes could hardly share any module.

In the following, we detail the effort that we are making in the SPACE collaboration to (i) foster the exchange
of know-how and knowledge in the development of modules that solve common problems, (ii) produce some
modules that could be actually shared among codes of the same type.

9.1 Grid codes

Fluid codes are typically constructed using either finite volume or finite difference techniques which - in their
basic form - follow a standard workflow made by a sequence of computationally intensive kernels. While these
kernels cannot - in the way they are coded - be easily re-used across codes, sharing them still allows code
developers to adopt similar optimization strategies and development approaches, in the attempt to improve
performance and scalability. To this end, we have identified three such common modules which are briefly
described in the following.

• Reconstruction: these have already been described above see, e.g., 3.2.2, 4.2.1 and 6.2.2. The reconstruc-
tion kernel is typically employed to recover the left and right interface values from the volume averages
of the solution itself. As codes may rely on algorithms with different spatial order (e.g. linear, parabolic
or cubic interpolation) or approach (e.g. conservative vs. primitive vs. characteristic variables), a gen-
eral re-usable module among codes would be an overwhelming complex task. However, the optimization
strategies (e.g. faster vs slower indices, local array allocation, data transposition, physical constrains such
as density or pressure positivity) can be easily identified ad shared among code developers.

• Riemann Solver: used to obtain a consistent numerical flux by solving (to various degree of approxima-
tion) the Riemann problem between adjacent left and right states. The Riemann solver can be considered
the heart of a finite-volume code. While a different solvers are available, the most basic ones (e.g. the
Rusanov-Lax-Friedrichs solver) can be shared among different groups.

• ConsToPrim: In order to correctly capture discontinuous features, astrophysical fluid / plasma codes evolve
conservative quantities such laboratory density, momentum and energy density. However, the recovery of
pressure and velocity from these quantities is a crucial step in the algorithm. While this is a relatively
simple procedure in the case of classical (Newtonian) flows, the relativistic counterparts require special
care and an iterative algorithm is typically employed. While this kernel should allow for some flexibility
(mainly in the way unphysical values are handled during runtime), the general designing and optimization
strategies on GPU can be shared by codes having relativistic solvers (e.g. PLUTO, FIL & BHAC).
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9.2 Particle codes

Both particle-based codes within the SPACE project, CHANGA and OpenGadget, are based on tree algorithms
and follow a logically similar workflow: update the domain decomposition if needed, calculate the gravitational
force, calculate the hydrodynamic force, compute physical processes (cooling, star formation, etc.), and update
positions and velocities. This workflow summary is quite simplified; for instance, the integration scheme is a
kick-drift-kick method, such that the updates of positions and velocities are performed at different times; the
time-stepping is hierarchical and as such not all the particles are active every time; the gravitational force is
split between long-range and short-range interactions. For more information we re-direct the reader to the
detailed description of each code.
Due to the similarity between the two codes, they are good candidates to share some of the modules that are
being optimized in the project, as follows:

• Cooling Function Matter in a gaseous or plasma state, under typical conditions in cosmological simu-
lations of large-scale structure evolution or galaxy formation, may lose or gain energy through radiative
cooling and heating. This includes various physical processes such as excitations, de-excitations, collisions,
etc. The net energy balance is determined by physical properties such as density, temperature, chemical
composition and the radiation background. The effectiveness of physical processes and which ones are
active depends as well on the same properties (eminently on the temperature). The modelling of these
physical processes can require very sophisticated codes, and the associated calculations can be extremely
demanding from the computational point of view.
Within SPACE, we are developing new sophisticated modules and exploring the feasibility of using online
ML techniques.
This will result in a module adopted by both codes as a common result of a joint development effort.

• Stellar Evolution Stars are a fundamental tracker of a galaxy’s evolution. The formation of stars
depends heavily on local physical conditions, which are, in turn, shaped by a wide range of large-scale
physical processes. Subsequently, their feedback, in terms of energy and chemical elements ejected by
supernovae explosions and stellar evolution, strongly impacts the physical evolution of the surrounding
environment. The star formation algorithm is crucial for every code simulating galaxy evolution. However,
once the ”stars” are released in the simulation, the evolution of the stellar populations that they represent
depends on a set of physical quantities (the age, the chemical composition, the mass) and assumptions
(the supernovae model, the initial mass function, the lifetime function, etc. ). As such, it may be rendered
a ”Module” shared by different codes. Even those codes do not need to be Lagrangian. We built such a
fully thread-safe module, and we will release it after complete testing.

• Tree The tree-related data structures and routines are the core of every Lagrangian code in this domain.
As detailed in the code descriptions in D1.1 and in this deliverable, the tree routines offer a multitude of
”services” related to the spatial ordering of the particles: to name a few, domain decomposition is built
upon the insight given by the tree nodes and different types of neighbourhood of a given target particle,
used in several modules, are retrieved using the tree.
In principle, the data needed to build the tree and run the relevant routines are just a few: the position
and the mass. However, since different ”types” of particles typically exist in a code (gas, dark matter,
stars, black holes, etc.), this information may also be needed because the neighbours needed for a given
operation may be of a precise type. In addition, several other code-specific information are typically added
because that allows for several optimizations that are strictly related to the code’s architecture. For these
reasons, producing a ”universal” tree code that a code could import as a library is not an obvious and
well-defined task, especially considering that CHANGA relies on a PGAS approach, while OpenGadget
does not. However, the SPACE collaboration fosters a close exchange of knowledge, know-how and best
practices between the two Lagrangian codes.
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10 Conclusions

This deliverable has detailed the process of selecting fundamental modules and kernels within these codes,
highlighting their extraction as mini–applications for the purpose of optimization and co-design. The preferred
methodology, aimed at disentangling infrastructure functionalities and physics from the code, offers a systematic
approach to enhancing performance, scalability, and energy efficiency.

While the ideal procedure involves isolating and creating standalone applications for each module, the
intricate nature of certain codes necessitates an alternative approach, that we detailed in the codes sections of
the document. The strategic removal of unnecessary functionalities within the existing code structure emerges as
a pragmatic solution, ensuring continued access to primary modules while potentially simplifying the integration
of updated functionalities. This approach, although not as pristine as creating individual mini-applications,
retains the essential functionality within the code and streamlines access to required modules, presenting a
feasible avenue for advancement.

Moreover, this approach minimizes the arduous back-integration process, as the updated modules are already
embedded within the overarching code structure.

The deliverable describes the different codes in the SPACE CoE and their modules and kernels in greater
detail.

For this task, each code presented a high-level description of the implemented algorithms and, from a
comparison with the other codes, a large variety of different approaches and architectures can be seen. The
only similarity between the codes is that they consist of a main loop iterating through the different steps until
the final step is reached, but the computations done within each step differ vastly between the different codes.
A consequence of these differences between the codes leads to the large variety of kernels and modules which
have been chosen for optimization by each code. In the following table all modules and kernels are listed:

Code Modules and kernels

OpenGADGET Tree Building, Tree Walking, Domain Decomposition, Gravity Tree, Density
Loop

PLUTO Boundary Conditions, States reconstruction, Riemann Solver, Right Hand
Side, Constrain transport update

BHAC Primitive reconstruction

Changa Gravity, SPMHD, Feedback, Star formation, Cooling, Cosmological Boundary

FIL Carpet, Driver evaluate MHD RHS, Conservative to primitive solver

iPic3D Particle Mover, Calculate Field

Ramses Hydrodynamical solver, MPI communications, Particle-mesh interaction

Table 1: Table listing all modules and kernels for each code identified for optmization.

As it is summarized in Table 1, each code focuses on one to six different modules and kernels. One large
aspect of the selected regions is the communications between different tasks, which will be of great importance
for the exa-scale.
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In conclusion, the key deliverable for this report encompasses the comprehensive description of the codes
and the identification of the modules and kernels earmarked for optimization. With the achievement of these
tasks, this report sets the foundations for the optimization activities to be pursued in WP2. This meticulous
groundwork serves as a cornerstone, facilitating the delineation of methodologies for module extraction and
establishing a roadmap toward enhanced performance, scalability, and energy efficiency.
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